graph_sample_neighbors.py 7.3 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
18
from paddle import _legacy_C_ops
19
import paddle.utils.deprecated as deprecated
S
Siming Dai 已提交
20 21


22 23 24 25 26
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.sample_neighbors",
    level=1,
    reason="paddle.incubate.graph_sample_neighbors will be removed in future")
S
Siming Dai 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39
def graph_sample_neighbors(row,
                           colptr,
                           input_nodes,
                           eids=None,
                           perm_buffer=None,
                           sample_size=-1,
                           return_eids=False,
                           flag_perm_buffer=False,
                           name=None):
    """
    Graph Sample Neighbors API.

    This API is mainly used in Graph Learning domain, and the main purpose is to
40 41
    provide high performance of graph sampling method. For example, we get the
    CSC(Compressed Sparse Column) format of the input graph edges as `row` and
S
Siming Dai 已提交
42
    `colptr`, so as to convert graph data into a suitable format for sampling.
43
    `input_nodes` means the nodes we need to sample neighbors, and `sample_sizes`
S
Siming Dai 已提交
44 45
    means the number of neighbors and number of layers we want to sample.

46
    Besides, we support fisher-yates sampling in GPU version.
S
Siming Dai 已提交
47 48 49 50 51 52 53 54 55 56 57

    Args:
        row (Tensor): One of the components of the CSC format of the input graph, and
                      the shape should be [num_edges, 1] or [num_edges]. The available
                      data type is int32, int64.
        colptr (Tensor): One of the components of the CSC format of the input graph,
                         and the shape should be [num_nodes + 1, 1] or [num_nodes + 1].
                         The data type should be the same with `row`.
        input_nodes (Tensor): The input nodes we need to sample neighbors for, and the
                              data type should be the same with `row`.
        eids (Tensor): The eid information of the input graph. If return_eids is True,
58
                            then `eids` should not be None. The data type should be the
S
Siming Dai 已提交
59 60 61
                            same with `row`. Default is None.
        perm_buffer (Tensor): Permutation buffer for fisher-yates sampling. If `flag_perm_buffer`
                              is True, then `perm_buffer` should not be None. The data type should
62 63
                              be the same with `row`. Default is None.
        sample_size (int): The number of neighbors we need to sample. Default value is
S
Siming Dai 已提交
64 65
                           -1, which means returning all the neighbors of the input nodes.
        return_eids (bool): Whether to return eid information of sample edges. Default is False.
66 67
        flag_perm_buffer (bool): Using the permutation for fisher-yates sampling in GPU. Default
                                 value is false, means not using it.
S
Siming Dai 已提交
68 69 70 71 72 73 74
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out_neighbors (Tensor): The sample neighbors of the input nodes.
        out_count (Tensor): The number of sampling neighbors of each input node, and the shape
                            should be the same with `input_nodes`.
75
        out_eids (Tensor): If `return_eids` is True, we will return the eid information of the
S
Siming Dai 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                           sample edges.

    Examples:
        .. code-block:: python
        import paddle
        # edges: (3, 0), (7, 0), (0, 1), (9, 1), (1, 2), (4, 3), (2, 4),
        #        (9, 5), (3, 5), (9, 6), (1, 6), (9, 8), (7, 8)
        row = [3, 7, 0, 9, 1, 4, 2, 9, 3, 9, 1, 9, 7]
        colptr = [0, 2, 4, 5, 6, 7, 9, 11, 11, 13, 13]
        nodes = [0, 8, 1, 2]
        sample_size = 2
        row = paddle.to_tensor(row, dtype="int64")
        colptr = paddle.to_tensor(colptr, dtype="int64")
        nodes = paddle.to_tensor(nodes, dtype="int64")
        out_neighbors, out_count = \
91
            paddle.incubate.graph_sample_neighbors(row, colptr, nodes,
S
Siming Dai 已提交
92 93 94 95 96 97 98
                                                   sample_size=sample_size)

    """

    if return_eids:
        if eids is None:
            raise ValueError(
99
                "`eids` should not be None if `return_eids` is True.")
S
Siming Dai 已提交
100 101 102 103

    if flag_perm_buffer:
        if perm_buffer is None:
            raise ValueError(
104
                "`perm_buffer` should not be None if `flag_perm_buffer`"
S
Siming Dai 已提交
105 106 107
                "is True.")

    if _non_static_mode():
108
        out_neighbors, out_count, out_eids = _legacy_C_ops.graph_sample_neighbors(
S
Siming Dai 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
            row, colptr, input_nodes, eids, perm_buffer, "sample_size",
            sample_size, "return_eids", return_eids, "flag_perm_buffer",
            flag_perm_buffer)
        if return_eids:
            return out_neighbors, out_count, out_eids
        return out_neighbors, out_count

    check_variable_and_dtype(row, "Row", ("int32", "int64"),
                             "graph_sample_neighbors")
    check_variable_and_dtype(colptr, "Col_Ptr", ("int32", "int64"),
                             "graph_sample_neighbors")
    check_variable_and_dtype(input_nodes, "X", ("int32", "int64"),
                             "graph_sample_neighbors")
    if return_eids:
        check_variable_and_dtype(eids, "Eids", ("int32", "int64"),
                                 "graph_sample_neighbors")
    if flag_perm_buffer:
        check_variable_and_dtype(perm_buffer, "Perm_Buffer", ("int32", "int64"),
                                 "graph_sample_neighbors")

    helper = LayerHelper("graph_sample_neighbors", **locals())
    out_neighbors = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_count = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_eids = helper.create_variable_for_type_inference(dtype=row.dtype)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    helper.append_op(type="graph_sample_neighbors",
                     inputs={
                         "Row": row,
                         "Col_Ptr": colptr,
                         "X": input_nodes,
                         "Eids": eids if return_eids else None,
                         "Perm_Buffer":
                         perm_buffer if flag_perm_buffer else None
                     },
                     outputs={
                         "Out": out_neighbors,
                         "Out_Count": out_count,
                         "Out_Eids": out_eids
                     },
                     attrs={
                         "sample_size": sample_size,
                         "return_eids": return_eids,
                         "flag_perm_buffer": flag_perm_buffer
                     })
S
Siming Dai 已提交
152 153 154
    if return_eids:
        return out_neighbors, out_count, out_eids
    return out_neighbors, out_count