graph_sample_neighbors.py 7.1 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid import core
20
from paddle import _C_ops, _legacy_C_ops
S
Siming Dai 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


def graph_sample_neighbors(row,
                           colptr,
                           input_nodes,
                           eids=None,
                           perm_buffer=None,
                           sample_size=-1,
                           return_eids=False,
                           flag_perm_buffer=False,
                           name=None):
    """
    Graph Sample Neighbors API.

    This API is mainly used in Graph Learning domain, and the main purpose is to
    provide high performance of graph sampling method. For example, we get the 
    CSC(Compressed Sparse Column) format of the input graph edges as `row` and 
    `colptr`, so as to convert graph data into a suitable format for sampling.
    `input_nodes` means the nodes we need to sample neighbors, and `sample_sizes` 
    means the number of neighbors and number of layers we want to sample.

    Besides, we support fisher-yates sampling in GPU version. 

    Args:
        row (Tensor): One of the components of the CSC format of the input graph, and
                      the shape should be [num_edges, 1] or [num_edges]. The available
                      data type is int32, int64.
        colptr (Tensor): One of the components of the CSC format of the input graph,
                         and the shape should be [num_nodes + 1, 1] or [num_nodes + 1].
                         The data type should be the same with `row`.
        input_nodes (Tensor): The input nodes we need to sample neighbors for, and the
                              data type should be the same with `row`.
        eids (Tensor): The eid information of the input graph. If return_eids is True,
                            then `eids` should not be None. The data type should be the 
                            same with `row`. Default is None.
        perm_buffer (Tensor): Permutation buffer for fisher-yates sampling. If `flag_perm_buffer`
                              is True, then `perm_buffer` should not be None. The data type should
                              be the same with `row`. Default is None. 
        sample_size (int): The number of neighbors we need to sample. Default value is 
                           -1, which means returning all the neighbors of the input nodes.
        return_eids (bool): Whether to return eid information of sample edges. Default is False.
        flag_perm_buffer (bool): Using the permutation for fisher-yates sampling in GPU. Default 
                                 value is false, means not using it. 
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out_neighbors (Tensor): The sample neighbors of the input nodes.
        out_count (Tensor): The number of sampling neighbors of each input node, and the shape
                            should be the same with `input_nodes`.
        out_eids (Tensor): If `return_eids` is True, we will return the eid information of the 
                           sample edges.

    Examples:
        .. code-block:: python
        import paddle
        # edges: (3, 0), (7, 0), (0, 1), (9, 1), (1, 2), (4, 3), (2, 4),
        #        (9, 5), (3, 5), (9, 6), (1, 6), (9, 8), (7, 8)
        row = [3, 7, 0, 9, 1, 4, 2, 9, 3, 9, 1, 9, 7]
        colptr = [0, 2, 4, 5, 6, 7, 9, 11, 11, 13, 13]
        nodes = [0, 8, 1, 2]
        sample_size = 2
        row = paddle.to_tensor(row, dtype="int64")
        colptr = paddle.to_tensor(colptr, dtype="int64")
        nodes = paddle.to_tensor(nodes, dtype="int64")
        out_neighbors, out_count = \
            paddle.incubate.graph_sample_neighbors(row, colptr, nodes, 
                                                   sample_size=sample_size)

    """

    if return_eids:
        if eids is None:
            raise ValueError(
                f"`eids` should not be None if `return_eids` is True.")

    if flag_perm_buffer:
        if perm_buffer is None:
            raise ValueError(
                f"`perm_buffer` should not be None if `flag_perm_buffer`"
                "is True.")

    if _non_static_mode():
104
        out_neighbors, out_count, out_eids = _legacy_C_ops.graph_sample_neighbors(
S
Siming Dai 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            row, colptr, input_nodes, eids, perm_buffer, "sample_size",
            sample_size, "return_eids", return_eids, "flag_perm_buffer",
            flag_perm_buffer)
        if return_eids:
            return out_neighbors, out_count, out_eids
        return out_neighbors, out_count

    check_variable_and_dtype(row, "Row", ("int32", "int64"),
                             "graph_sample_neighbors")
    check_variable_and_dtype(colptr, "Col_Ptr", ("int32", "int64"),
                             "graph_sample_neighbors")
    check_variable_and_dtype(input_nodes, "X", ("int32", "int64"),
                             "graph_sample_neighbors")
    if return_eids:
        check_variable_and_dtype(eids, "Eids", ("int32", "int64"),
                                 "graph_sample_neighbors")
    if flag_perm_buffer:
        check_variable_and_dtype(perm_buffer, "Perm_Buffer", ("int32", "int64"),
                                 "graph_sample_neighbors")

    helper = LayerHelper("graph_sample_neighbors", **locals())
    out_neighbors = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_count = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_eids = helper.create_variable_for_type_inference(dtype=row.dtype)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    helper.append_op(type="graph_sample_neighbors",
                     inputs={
                         "Row": row,
                         "Col_Ptr": colptr,
                         "X": input_nodes,
                         "Eids": eids if return_eids else None,
                         "Perm_Buffer":
                         perm_buffer if flag_perm_buffer else None
                     },
                     outputs={
                         "Out": out_neighbors,
                         "Out_Count": out_count,
                         "Out_Eids": out_eids
                     },
                     attrs={
                         "sample_size": sample_size,
                         "return_eids": return_eids,
                         "flag_perm_buffer": flag_perm_buffer
                     })
S
Siming Dai 已提交
148 149 150
    if return_eids:
        return out_neighbors, out_count, out_eids
    return out_neighbors, out_count