OptimizerConfig.proto 4.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7
syntax = "proto2";
 
option optimize_for = LITE_RUNTIME;

package paddle;

message SGDConfig {
D
dzhwinter 已提交
8
  // SGD
D
dzhwinter 已提交
9 10 11 12 13 14
  // momentum: float >= 0. Parameter updates momentum.
  // decay: float >= 0. Learning rate decay over each update.
  // nesterov: boolean. Whether to apply Nesterov momentum.
  optional double momentum = 21 [default = 0.0];
  optional double decay = 23 [default = 0.0];
  optional bool nesterov =24 [default = false];
D
dzhwinter 已提交
15

16
}
D
dzhwinter 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


message AdadeltaConfig {
  // Adadelta
  // It is recommended to leave it at the default value.
  // rho: float >= 0.
  // epsilon: float >= 0. Fuzz factor.
  // decay: float >= 0. Learning rate decay over each update.

  // reference : [Adadelta - an adaptive learning rate method](http://arxiv.org/abs/1212.5701)
  optional double rho = 33 [default = 0.90];
  optional double epsilon = 31 [default = 1e-5];
  optional double decay = 32 [default = 0.0];

}

message AdagradConfig {
// Adagrad
// epsilon: float >= 0.
// decay: float >= 0. Learning rate decay over each update.

// reference : [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
  optional double epsilon = 41 [default = 1e-5];
  optional double decay = 42 [default = 0.0];
}

message AdamConfig {
  // Adaj
  // beta_1: float, 0 < beta < 1. Generally close to 1.
  // beta_2: float, 0 < beta < 1. Generally close to 1.
  // epsilon: float >= 0. Fuzz factor.
  // decay: float >= 0. Learning rate decay over each update.
  // reference : [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
  optional double beta_1 = 41;
  optional double beta_2 = 42;
  optional double epsilon = 43;
  optional double decay = 44;
}

D
dzhwinter 已提交
56
message ConstLrConfig {
D
dzhwinter 已提交
57
  // learninRate Policy
D
dzhwinter 已提交
58
  optional double learning_rate = 1 [default = 1.0];
D
dzhwinter 已提交
59 60
}

D
dzhwinter 已提交
61
message LinearLrConfig {
D
dzhwinter 已提交
62
  // learninRate Policy
D
dzhwinter 已提交
63
  optional double learning_rate = 1 [default = 1.0];
D
dzhwinter 已提交
64 65
  optional double lr_decay_a = 2;
  optional double lr_decay_b = 3;
D
dzhwinter 已提交
66 67
}

68 69 70 71 72 73 74 75 76
message TensorProto {
enum DataType {
  PADDLE_ELEMENT_TYPE_INT32 = 0;
  PADDLE_ELEMENT_TYPE_UINT32 = 1;
  PADDLE_ELEMENT_TYPE_INT64 = 2;
  PADDLE_ELEMENT_TYPE_UINT64 = 3;
  PADDLE_ELEMENT_TYPE_FLOAT32 = 4;
  PADDLE_ELEMENT_TYPE_FLOAT64 = 5;
}
D
dzhwinter 已提交
77
  optional DataType data_type = 1;
78 79 80
  repeated bytes content = 2;
}

D
dongzhihong 已提交
81 82 83 84 85 86 87
message LrPolicyState {
  // learninRate Policy
  optional double learning_rate = 1 [default = 1.0];
  optional double lr_decay_a = 2;
  optional double lr_decay_b = 3;
}

D
dzhwinter 已提交
88
message SGDOptimizerState {
D
dongzhihong 已提交
89
  optional LrPolicyState lrstate = 101;
D
dzhwinter 已提交
90
  optional double num_sample_passed = 104;
D
dzhwinter 已提交
91 92 93 94
  // state
  optional TensorProto parameter = 1;
  optional TensorProto momentums = 2;
}
D
dzhwinter 已提交
95

D
dzhwinter 已提交
96 97
message AdadeltaOptimizerState {
  // learning rate policy
D
dongzhihong 已提交
98
  optional LrPolicyState lrstate = 101;
D
dzhwinter 已提交
99 100 101
  optional double num_sample_passed = 104;
  // state
  optional TensorProto parameter = 1;
D
dzhwinter 已提交
102 103 104
  optional TensorProto accum_gradient = 2;
  optional TensorProto accum_delta = 3;
  optional TensorProto update_delta = 4;
D
dzhwinter 已提交
105
}
D
dzhwinter 已提交
106

D
dongzhihong 已提交
107

D
dzhwinter 已提交
108
message AdagradOptimizerState {
D
dongzhihong 已提交
109
  optional LrPolicyState lrstate = 101;
D
dzhwinter 已提交
110 111 112 113 114
  optional double num_sample_passed = 104;
  // state
  optional TensorProto parameter = 1;
  optional TensorProto accum_gradient = 2;
}
D
dzhwinter 已提交
115

D
dzhwinter 已提交
116
message AdamOptimizerState {
D
dongzhihong 已提交
117
  optional LrPolicyState lrstate = 101;
D
dzhwinter 已提交
118 119 120 121 122
  optional double num_sample_passed = 104;
  // state
  optional TensorProto parameter = 1;
  optional TensorProto momentums = 2;
  optional TensorProto velocitys = 3;
123
}
D
dzhwinter 已提交
124 125

message OptimizerConfig {
D
dzhwinter 已提交
126 127 128 129 130 131
  enum Optimizer {
   SGD = 1;
   Adadelta = 2;
   Adagrad = 3;
   Adam = 4;
  }
D
dzhwinter 已提交
132
  optional Optimizer optimizer = 1;
D
dzhwinter 已提交
133 134 135 136 137
  optional SGDConfig sgd = 3;
  optional AdadeltaConfig adadelta = 4;
  optional AdagradConfig adagrad = 5;
  optional AdamConfig adam = 6;

D
dzhwinter 已提交
138
  enum LrPolicy {
D
dzhwinter 已提交
139 140
   Const = 0;
   Linear = 1;
D
dzhwinter 已提交
141
  }
D
dzhwinter 已提交
142
  optional LrPolicy lr_policy = 11;
D
dzhwinter 已提交
143 144
  optional ConstLrConfig const_lr = 12;
  optional LinearLrConfig linear_lr = 13;
D
dzhwinter 已提交
145 146

  // common config of optimizer
D
dzhwinter 已提交
147 148 149 150
  // gradient clip when L2 exceeding value
  optional double clip_norm = 101;
  // gradient clip when L1 exceeding value
  optional double clip_value = 102;
D
dzhwinter 已提交
151
}