OptimizerConfig.proto 3.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
syntax = "proto2";
 
option optimize_for = LITE_RUNTIME;

package paddle;

message SGDConfig {
  // SGD 
  // momentum: float >= 0. Parameter updates momentum.
  // decay: float >= 0. Learning rate decay over each update.
  // nesterov: boolean. Whether to apply Nesterov momentum.
  optional double momentum = 21 [default = 0.0];
  optional double decay = 23 [default = 0.0];
  optional bool nesterov =24 [default = false];
15
}
D
dzhwinter 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


message AdadeltaConfig {
  // Adadelta
  // It is recommended to leave it at the default value.
  // rho: float >= 0.
  // epsilon: float >= 0. Fuzz factor.
  // decay: float >= 0. Learning rate decay over each update.

  // reference : [Adadelta - an adaptive learning rate method](http://arxiv.org/abs/1212.5701)
  optional double rho = 33 [default = 0.90];
  optional double epsilon = 31 [default = 1e-5];
  optional double decay = 32 [default = 0.0];

}

message AdagradConfig {
// Adagrad
// epsilon: float >= 0.
// decay: float >= 0. Learning rate decay over each update.

// reference : [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
  optional double epsilon = 41 [default = 1e-5];
  optional double decay = 42 [default = 0.0];
}

message AdamConfig {
  // Adaj
  // beta_1: float, 0 < beta < 1. Generally close to 1.
  // beta_2: float, 0 < beta < 1. Generally close to 1.
  // epsilon: float >= 0. Fuzz factor.
  // decay: float >= 0. Learning rate decay over each update.
  // reference : [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
  optional double beta_1 = 41;
  optional double beta_2 = 42;
  optional double epsilon = 43;
  optional double decay = 44;
}

D
dzhwinter 已提交
55 56
message ConstLr {
  // learninRate Policy
D
dzhwinter 已提交
57
  required double learning_rate = 1 [default = 1.0];
D
dzhwinter 已提交
58 59 60
}

message LinearLr {
D
dzhwinter 已提交
61
  // learninRate Policy
D
dzhwinter 已提交
62 63 64
  required double learning_rate = 1 [default = 1.0];
  optional double lr_decay_a = 2;
  optional double lr_decay_b = 3;
D
dzhwinter 已提交
65 66
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
message TensorProto {
enum DataType {
  PADDLE_ELEMENT_TYPE_INT32 = 0;
  PADDLE_ELEMENT_TYPE_UINT32 = 1;
  PADDLE_ELEMENT_TYPE_INT64 = 2;
  PADDLE_ELEMENT_TYPE_UINT64 = 3;
  PADDLE_ELEMENT_TYPE_FLOAT32 = 4;
  PADDLE_ELEMENT_TYPE_FLOAT64 = 5;
}
  required DataType data_type = 1;
  repeated bytes content = 2;
  optional uint64 size = 3;
}

message OptimizerState {
  // match old training state with format parser
  required string version = 100;
  repeated TensorProto data = 1;
  repeated double hyperparam = 3;
}
D
dzhwinter 已提交
87 88

message OptimizerConfig {
D
dzhwinter 已提交
89 90 91 92 93 94 95
  enum Optimizer {
   SGD = 1;
   Adadelta = 2;
   Adagrad = 3;
   Adam = 4;
  }
  required Optimizer optimizer = 1;
D
dzhwinter 已提交
96 97 98 99 100
  optional SGDConfig sgd = 3;
  optional AdadeltaConfig adadelta = 4;
  optional AdagradConfig adagrad = 5;
  optional AdamConfig adam = 6;

D
dzhwinter 已提交
101 102 103 104 105
  enum LrPolicy {
   ConstLr = 0;
   LinearLr = 1;
  }
  required LrPolicy lr_policy = 11;
D
dzhwinter 已提交
106
  optional ConstLr const_lr = 12;
D
dzhwinter 已提交
107
  optional LinearLr linear_lr = 13;
D
dzhwinter 已提交
108 109

  // common config of optimizer
D
dzhwinter 已提交
110 111 112 113
  // gradient clip when L2 exceeding value
  optional double clip_norm = 101;
  // gradient clip when L1 exceeding value
  optional double clip_value = 102;
D
dzhwinter 已提交
114
}