partitioner.py 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
import paddle.fluid as fluid
from paddle.fluid import core
18 19
from paddle.fluid import core
from paddle.fluid.framework import Parameter, Program
20
from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
21
from paddle.distributed.auto_parallel.dist_context import DistributedContext
22
from .dist_attribute import OperatorDistributedAttribute
23
from .utils import is_backward_op, is_forward_op, is_loss_op, is_optimize_op
J
JZ-LIANG 已提交
24
from .operators.common import BACKWARD_ONLY_DIST_OPS
25

26
__varname_not_in_block__ = ["lod_tensor_blocking_queue"]
27 28 29
__not_shape_var_type__ = [
    core.VarDesc.VarType.READER, core.VarDesc.VarType.STEP_SCOPES
]
30 31 32 33 34 35 36


class Partitioner(object):
    """
    warning:: Partitioner is experimental and subject to change.

    Partitioner convert a program into another program.
37
    Given a serial program which has been auto completed with shard annotation, the Partitioner
38 39 40 41 42 43 44 45
    convert the serial program into a "distributed" program. The Partitioner will  modify the serial
    program in following two ways, which is also the major difference between serial and distributed program:
        1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation
        2. partition var: if a var is sharded, modify the shape of var according to its shard annotation

    Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user.
    """

46
    def __init__(self, dist_context, rank_id=0):
47 48
        """
        Args:
49
            dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario.
50 51
            rank_id (int): global rank id to which the partitioned distributed program belong.
        """
52
        if not isinstance(dist_context, DistributedContext):
53
            raise TypeError(
54 55
                "dist_context be paddle.fluid.DistributedContext, got %s here" %
                type(dist_context))
56

57
        self._dist_context = dist_context
58 59 60 61
        self._rank_id = rank_id
        self._serial2dist_varname_mapping = {}
        self._dist_varname_suffix = ""

62 63 64
    def partition(self, serial_main_program, serial_startup_program,
                  params_grads):
        if not isinstance(serial_main_program, (Program)):
65
            raise TypeError(
66 67
                "main_program be paddle.fluid.framework.program, got %s here" %
                type(serial_main_program))
68 69

        # check if shard annotated serial program valid
70
        if not self._is_valid_annotated_program(serial_main_program):
71 72 73
            raise RuntimeError(
                "Not all vars or ops are annotated in main program !")

74 75
        # init distop helper
        dist_op_context = self._dist_context.dist_op_context
76 77
        dist_op_context.varname_mapping = self._serial2dist_varname_mapping
        dist_op_context.rank_id = self._rank_id
78

79 80 81 82 83 84
        # partition startup program
        if serial_startup_program == None:
            partitioned_startup_prog = None
        else:
            partitioned_startup_prog = self.partition_startup_program(
                serial_main_program, serial_startup_program)
85
        dist_op_context.dst_startup_program = partitioned_startup_prog
86

87
        # partition main program
88 89
        partitioned_main_prog, partitioned_params_grads = self.partition_main_program(
            serial_main_program, params_grads)
90

91
        return partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads
92

93 94
    def partition_startup_program(self, serial_main_program,
                                  serial_startup_program):
95

96 97 98 99
        if not isinstance(serial_startup_program, (Program)):
            raise TypeError(
                "dist_context be paddle.fluid.framework.program, got %s here" %
                type(serial_startup_program))
100

101 102 103
        partitioned_startup_prog = fluid.Program()
        ref_block = serial_main_program.global_block()
        target_block = partitioned_startup_prog.global_block()
J
JZ-LIANG 已提交
104
        var2shape = {}
105
        temp_varname_map = {}
106

107 108
        # tensors
        for var in serial_startup_program.list_vars():
J
JZ-LIANG 已提交
109 110 111 112 113 114
            assert var.persistable
            new_name = var.name + self._dist_varname_suffix
            temp_varname_map[var.name] = new_name
            target_shape = _partition_var(self._dist_context, ref_block,
                                          target_block, var.name, new_name)
            var2shape[new_name] = target_shape
115 116 117 118 119 120 121 122 123 124

        # ops
        for op in serial_startup_program.global_block().ops:
            # TODO if var not belong to this rank, should be filtered
            output_vars = op.desc.output_arg_names()
            assert len(
                output_vars
            ) == 1, "initializer should output only ONE variable, but got [{}]".format(
                str(op.desc))
            assert temp_varname_map[output_vars[
J
JZ-LIANG 已提交
125
                0]] in var2shape, "try to initialize [{}] which is not a persistable var".format(
126 127 128 129 130 131
                    output_vars[0])
            new_op_desc = target_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op_desc._rename_output(output_vars[0],
                                       temp_varname_map[output_vars[0]])
            new_op_desc._set_attr("shape",
J
JZ-LIANG 已提交
132
                                  var2shape[temp_varname_map[output_vars[0]]])
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            target_block._sync_with_cpp()

            # set distribute atrribute
            new_op = target_block.ops[-1]
            assert new_op.type == new_op_desc.type()
            assert new_op.desc == new_op_desc
            output_var = target_block.var(output_vars[0])
            output_var_attr = self._dist_context.get_tensor_dist_attr_for_program(
                output_var)
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = output_var_attr.process_mesh
            op_attr.set_output_dims_mapping(output_var.name,
                                            output_var_attr.dims_mapping)
            op_attr.set_input_dims_mapping(output_var.name,
                                           output_var_attr.dims_mapping)
            self._dist_context.set_op_dist_attr_for_program(new_op, op_attr)

        return partitioned_startup_prog

    def partition_main_program(self, serial_main_program, params_and_grads):
153 154 155 156 157 158
        """
        1. partition variables
        2. replace local op with corresponding dist op
        """

        partitioned_main_prog = fluid.Program()
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        dist_op_context = self._dist_context.dist_op_context
        dist_op_context.dst_main_program = partitioned_main_prog

        for idx in range(self._dist_context.block_state.nblock):
            ref_block = serial_main_program.blocks[idx]

            if idx == 0:
                target_block = partitioned_main_prog.blocks[0]
            else:
                target_block = partitioned_main_prog._create_block(
                    parent_idx=ref_block.parent_idx)
                assert ref_block.idx == target_block.idx
                target_block._set_forward_block_idx(ref_block.forward_block_idx)
            dist_op_context.work_block = target_block
            self.partition_block(ref_block, target_block)

        partitioned_main_prog.current_block_idx = 0

177 178 179 180 181 182 183 184 185 186
        # should reconnect the block_attr ptr to the correct block
        for block_id in range(self._dist_context.block_state.nblock):
            block = partitioned_main_prog.block(block_id)
            for op in block.ops:
                for attr_name in op.all_attrs():
                    if op.attr_type(attr_name) == core.AttrType.BLOCK:
                        relative_id = op._block_attr_id(attr_name)
                        op._set_attr(attr_name,
                                     partitioned_main_prog.block(relative_id))

187 188 189 190 191 192 193 194
        partitioned_params_and_grads = []
        for p, g in params_and_grads:
            assert p.name in self._serial2dist_varname_mapping
            dist_p = self._get_dist_var_by_serial_var(p, partitioned_main_prog)
            if g is None:
                dist_g = None
            else:
                assert g.name in self._serial2dist_varname_mapping
195 196
                dist_g = self._get_dist_var_by_serial_var(
                    g, partitioned_main_prog)
197 198 199 200 201 202 203 204
            partitioned_params_and_grads.append((dist_p, dist_g))

        return partitioned_main_prog, partitioned_params_and_grads

    def partition_block(self, ref_block, target_block):

        dist_op_context = self._dist_context.dist_op_context
        serial_ops = ref_block.ops
205

206 207 208 209 210 211 212 213 214
        last_fwd_op_idx = -1
        for idx, op in enumerate(ref_block.ops):
            if is_loss_op(op):
                last_fwd_op_idx = idx
                break

        if last_fwd_op_idx == -1:
            last_fwd_op_idx = len(ref_block.ops)

215 216 217
        # init mapping
        forward_op_id2forward_op = {}
        for idx in range(len(serial_ops)):
218
            if idx <= last_fwd_op_idx:
219 220
                forward_op_id2forward_op[
                    serial_ops[idx].desc.original_id()] = serial_ops[idx]
221

222
        # partiiton
Z
zhaoyingli 已提交
223
        appended_grad_times = 0
224 225
        for idx, op in enumerate(serial_ops):

Z
zhaoyingli 已提交
226
            op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
227 228
            if is_backward_op(op) and (is_forward_op(serial_ops[idx - 1])
                                       or is_loss_op(serial_ops[idx - 1])):
Z
zhaoyingli 已提交
229 230
                if not op_dist_attr.is_recompute:
                    appended_grad_times += 1
231 232 233 234 235

            # partititon input variables
            for serial_input_varname in op.desc.input_arg_names():
                if serial_input_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_input_varname + self._dist_varname_suffix
236 237 238 239
                    if ref_block.has_var(serial_input_varname):
                        _partition_var(self._dist_context, ref_block,
                                       target_block, serial_input_varname,
                                       new_varname)
240
                    else:
241 242 243
                        for varname_not_in_block in __varname_not_in_block__:
                            assert varname_not_in_block in serial_input_varname, \
                                "{} is not found".format(serial_input_varname)
244 245 246 247 248 249 250 251

                    self._serial2dist_varname_mapping[
                        serial_input_varname] = new_varname

            # partition output vars
            for serial_output_varname in op.desc.output_arg_names():
                if serial_output_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_output_varname + self._dist_varname_suffix
252
                    _partition_var(self._dist_context, ref_block, target_block,
253 254 255 256 257
                                   serial_output_varname, new_varname)
                    self._serial2dist_varname_mapping[
                        serial_output_varname] = new_varname

            # partition op
258
            if is_forward_op(op) or op_dist_attr.is_recompute:
259 260 261 262 263 264 265 266 267 268
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_forward_impl = _get_dist_op_forward_implement(
                    op, self._dist_context)
                dist_op_forward_impl.forward(self._dist_context, **kinputs,
                                             **koutputs)

            elif is_backward_op(op):
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_backward_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
269 270 271 272 273
                grad_var_to_var = self._dist_context.dist_op_context.grad_var_to_var[
                    appended_grad_times]
                dist_op_backward_impl.backward(
                    self._dist_context, **kinputs, **koutputs,
                    **{"grad_var_to_var": grad_var_to_var})
274
            elif is_optimize_op(op):
275
                # NOTE: BACKWARD_ONLY_DIST_OPS's op_role must 2 because of 1F1B PASS
276
                kinputs, koutputs = dist_op_context.prepare_context(op)
277 278 279
                dist_op_opt_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
                dist_op_opt_impl.backward(self._dist_context, **kinputs,
280
                                          **koutputs, **{"grad_var_to_var": {}})
281
            else:
282
                raise NotImplementedError(
283 284
                    "partitioner only support forward and backward, optimize ops, but got {}"
                    .format(str(op)))
285

286 287 288 289 290 291
    def _is_valid_annotated_program(self, program):

        # TODO (ZJ-LIANG) should check all block
        ops = program.global_block().ops
        vars_ = program.list_vars()
        op_dist_attrs = [
292
            self._dist_context.get_op_dist_attr_for_program(op) for op in ops
293 294
        ]
        var_dist_attrs = [
295
            self._dist_context.get_tensor_dist_attr_for_program(var)
296
            for var in vars_ if (var.type not in __not_shape_var_type__)
297 298 299 300 301 302 303 304 305
        ]

        all_ops_annotated = all(dist_attr is not None
                                for dist_attr in op_dist_attrs)
        all_vars_annotated = all(dist_attr is not None
                                 for dist_attr in var_dist_attrs)

        return all_ops_annotated and all_vars_annotated

306 307 308 309 310 311 312 313
    def _get_dist_var_by_serial_var(self, serial_var, partitioned_main_prog):

        block_idx = serial_var.block.idx
        target_block = partitioned_main_prog.blocks[block_idx]
        dist_var_name = self._serial2dist_varname_mapping[serial_var.name]
        assert target_block.has_var(dist_var_name)
        return target_block.var(dist_var_name)

314 315 316 317

def _get_dist_shape(var, dist_attr):

    var_shape = var.shape
318 319
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
320 321 322
    if mapping == []:
        return var_shape

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            assert var_shape[idx] % mesh[mapping[
                idx]] == 0, "un-event partition: var_shape[idx]=[{}], mesh[{}]".format(
                    var_shape[idx], mesh[mapping[idx]])
            new_shape.append(var_shape[idx] // mesh[mapping[idx]])

    return new_shape


340
def _partition_parameter(dist_context, src_var, dst_block, dst_varname,
341 342
                         dst_shape):
    # NOTE hack to copied Parameter
343
    # not initialized parameter, need to initialize it
344 345 346 347 348 349 350
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

351 352 353 354 355 356 357 358 359 360 361
    param = Parameter(block=dst_block,
                      type=src_var.type,
                      name=dst_varname,
                      shape=dst_shape,
                      dtype=src_var.dtype,
                      lod_level=src_var.lod_level,
                      error_clip=src_var.error_clip,
                      stop_gradient=src_var.stop_gradient,
                      is_data=src_var.is_data,
                      belong_to_optimizer=src_var.belong_to_optimizer,
                      **copied_kwargs)
362

363
    return param
364 365


366 367
def _partition_intermediate_var(dist_context, src_var, dst_block, dst_varname,
                                dst_shape):
368 369 370 371 372 373 374 375 376 377
    var = dst_block.create_var(type=src_var.type,
                               name=dst_varname,
                               shape=dst_shape,
                               dtype=src_var.dtype,
                               lod_level=src_var.lod_level,
                               persistable=src_var.persistable,
                               error_clip=src_var.error_clip,
                               stop_gradient=src_var.stop_gradient,
                               is_data=src_var.is_data,
                               belong_to_optimizer=src_var.belong_to_optimizer)
378

379
    return var
380 381


382
def _partition_var(dist_context, src_block, dst_block, src_varname,
383 384 385 386 387 388
                   dst_varname):
    """
    partition include: split + replicate
    """
    src_var = src_block.var(src_varname)

389
    if src_var.type in __not_shape_var_type__:
390
        persist = getattr(src_var, 'persistable', False)
391 392 393 394
        new_var = dst_block.create_var(type=src_var.type,
                                       name=dst_varname,
                                       persistable=persist,
                                       stop_gradient=True)
J
JZ-LIANG 已提交
395
        target_shape = None
396
    else:
397
        dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var)
398 399 400
        target_shape = _get_dist_shape(src_var, dist_attr)

        if isinstance(src_var, Parameter):
401 402
            new_var = _partition_parameter(dist_context, src_var, dst_block,
                                           dst_varname, target_shape)
403
        else:
404 405 406
            new_var = _partition_intermediate_var(dist_context, src_var,
                                                  dst_block, dst_varname,
                                                  target_shape)
407 408 409 410 411 412

    dist_attr = copy.deepcopy(
        dist_context.get_tensor_dist_attr_for_program(src_var))
    assert dist_attr is not None
    dist_context.set_tensor_dist_attr_for_program(new_var, dist_attr)

J
JZ-LIANG 已提交
413
    return target_shape
414 415


416 417 418
def _get_dist_op_backward_implement(backward_op, dist_context,
                                    forward_op_id2forward_op):
    dist_op_context = dist_context.dist_op_context
419 420 421
    if backward_op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
        forward_op_id = dist_op_context.grad_op_id_to_op_id[
            backward_op.desc.original_id()]
422 423 424
        forward_op = forward_op_id2forward_op[forward_op_id]
        forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
            forward_op)
425 426 427 428 429
        dist_op_impl_container = get_distributed_operator_impl_container(
            forward_op_dist_attr.impl_type)
        dist_op_impl = dist_op_impl_container.get_impl(
            forward_op_dist_attr.impl_idx)
        return dist_op_impl
430

431
    # # NOTE trick for dist ops that only have backward implement
J
JZ-LIANG 已提交
432 433
    if backward_op.type in BACKWARD_ONLY_DIST_OPS:
        op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op)
434 435
        assert op_dist_attr.impl_idx >= 0
        dist_op_impl = get_distributed_operator_impl_container(
Z
zhaoyingli 已提交
436
            op_dist_attr.impl_type).get_impl(op_dist_attr.impl_idx)
437
        return dist_op_impl
J
JZ-LIANG 已提交
438 439 440

    dist_op = get_distributed_operator_impl_container("default")
    return dist_op.get_impl(0)
441 442 443 444


def _get_dist_op_forward_implement(forward_op, dist_context):
    dist_attr = dist_context.get_op_dist_attr_for_program(forward_op)
445 446 447 448
    dist_op_impl_container = get_distributed_operator_impl_container(
        dist_attr.impl_type)
    dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx)
    return dist_op_impl