partitioner.py 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import framework as framework
from paddle.fluid import core, unique_name
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
23 24 25 26
from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
from paddle.distributed.auto_parallel.dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute
from .process_group import new_process_group
27
from .utils import set_dist_op_desc_original_id
28
from .utils import print_program_with_dist_attr, is_forward_op, is_backward_op, is_loss_op, is_optimize_op
J
JZ-LIANG 已提交
29
from .operators.common import BACKWARD_ONLY_DIST_OPS
30 31

__varname_not_in_block__ = ["lod_tensor_blocking_queue_0"]
32 33 34
__not_shape_var_type__ = [
    core.VarDesc.VarType.READER, core.VarDesc.VarType.STEP_SCOPES
]
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


class Partitioner(object):
    """
    warning:: Partitioner is experimental and subject to change.

    Partitioner convert a program into another program.
    Given a serial program which has been auto completed with shard annotation, the Partitioner 
    convert the serial program into a "distributed" program. The Partitioner will  modify the serial
    program in following two ways, which is also the major difference between serial and distributed program:
        1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation
        2. partition var: if a var is sharded, modify the shape of var according to its shard annotation

    Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user.
    """

51
    def __init__(self, dist_context, rank_id=0):
52 53
        """
        Args:
54
            dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario.
55 56
            rank_id (int): global rank id to which the partitioned distributed program belong.
        """
57
        if not isinstance(dist_context, DistributedContext):
58
            raise TypeError(
59 60
                "dist_context be paddle.fluid.DistributedContext, got %s here" %
                type(dist_context))
61

62
        self._dist_context = dist_context
63 64 65 66
        self._rank_id = rank_id
        self._serial2dist_varname_mapping = {}
        self._dist_varname_suffix = ""

67 68 69
    def partition(self, serial_main_program, serial_startup_program,
                  params_grads):
        if not isinstance(serial_main_program, (Program)):
70
            raise TypeError(
71 72
                "main_program be paddle.fluid.framework.program, got %s here" %
                type(serial_main_program))
73 74

        # check if shard annotated serial program valid
75
        if not self._is_valid_annotated_program(serial_main_program):
76 77 78
            raise RuntimeError(
                "Not all vars or ops are annotated in main program !")

79 80
        # init distop helper
        dist_op_context = self._dist_context.dist_op_context
81 82
        dist_op_context.varname_mapping = self._serial2dist_varname_mapping
        dist_op_context.rank_id = self._rank_id
83

84 85 86 87 88 89
        # partition startup program
        if serial_startup_program == None:
            partitioned_startup_prog = None
        else:
            partitioned_startup_prog = self.partition_startup_program(
                serial_main_program, serial_startup_program)
90
        dist_op_context.dst_startup_program = partitioned_startup_prog
91

92
        # partition main program
93 94
        partitioned_main_prog, partitioned_params_grads = self.partition_main_program(
            serial_main_program, params_grads)
95

96
        return partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads
97

98 99
    def partition_startup_program(self, serial_main_program,
                                  serial_startup_program):
100

101 102 103 104
        if not isinstance(serial_startup_program, (Program)):
            raise TypeError(
                "dist_context be paddle.fluid.framework.program, got %s here" %
                type(serial_startup_program))
105

106 107 108
        partitioned_startup_prog = fluid.Program()
        ref_block = serial_main_program.global_block()
        target_block = partitioned_startup_prog.global_block()
J
JZ-LIANG 已提交
109
        var2shape = {}
110
        temp_varname_map = {}
111

112 113
        # tensors
        for var in serial_startup_program.list_vars():
J
JZ-LIANG 已提交
114 115 116 117 118 119
            assert var.persistable
            new_name = var.name + self._dist_varname_suffix
            temp_varname_map[var.name] = new_name
            target_shape = _partition_var(self._dist_context, ref_block,
                                          target_block, var.name, new_name)
            var2shape[new_name] = target_shape
120 121 122 123 124 125 126 127 128 129

        # ops
        for op in serial_startup_program.global_block().ops:
            # TODO if var not belong to this rank, should be filtered
            output_vars = op.desc.output_arg_names()
            assert len(
                output_vars
            ) == 1, "initializer should output only ONE variable, but got [{}]".format(
                str(op.desc))
            assert temp_varname_map[output_vars[
J
JZ-LIANG 已提交
130
                0]] in var2shape, "try to initialize [{}] which is not a persistable var".format(
131 132 133 134 135 136
                    output_vars[0])
            new_op_desc = target_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op_desc._rename_output(output_vars[0],
                                       temp_varname_map[output_vars[0]])
            new_op_desc._set_attr("shape",
J
JZ-LIANG 已提交
137
                                  var2shape[temp_varname_map[output_vars[0]]])
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            target_block._sync_with_cpp()

            # set distribute atrribute
            new_op = target_block.ops[-1]
            assert new_op.type == new_op_desc.type()
            assert new_op.desc == new_op_desc
            output_var = target_block.var(output_vars[0])
            output_var_attr = self._dist_context.get_tensor_dist_attr_for_program(
                output_var)
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = output_var_attr.process_mesh
            op_attr.set_output_dims_mapping(output_var.name,
                                            output_var_attr.dims_mapping)
            op_attr.set_input_dims_mapping(output_var.name,
                                           output_var_attr.dims_mapping)
            self._dist_context.set_op_dist_attr_for_program(new_op, op_attr)

        return partitioned_startup_prog

    def partition_main_program(self, serial_main_program, params_and_grads):
158 159 160 161 162 163
        """
        1. partition variables
        2. replace local op with corresponding dist op
        """

        partitioned_main_prog = fluid.Program()
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        dist_op_context = self._dist_context.dist_op_context
        dist_op_context.dst_main_program = partitioned_main_prog

        for idx in range(self._dist_context.block_state.nblock):
            ref_block = serial_main_program.blocks[idx]

            if idx == 0:
                target_block = partitioned_main_prog.blocks[0]
            else:
                target_block = partitioned_main_prog._create_block(
                    parent_idx=ref_block.parent_idx)
                assert ref_block.idx == target_block.idx
                target_block._set_forward_block_idx(ref_block.forward_block_idx)
            dist_op_context.work_block = target_block
            self.partition_block(ref_block, target_block)

        partitioned_main_prog.current_block_idx = 0

182 183 184 185 186 187 188 189 190 191
        # should reconnect the block_attr ptr to the correct block
        for block_id in range(self._dist_context.block_state.nblock):
            block = partitioned_main_prog.block(block_id)
            for op in block.ops:
                for attr_name in op.all_attrs():
                    if op.attr_type(attr_name) == core.AttrType.BLOCK:
                        relative_id = op._block_attr_id(attr_name)
                        op._set_attr(attr_name,
                                     partitioned_main_prog.block(relative_id))

192 193 194 195 196 197 198 199
        partitioned_params_and_grads = []
        for p, g in params_and_grads:
            assert p.name in self._serial2dist_varname_mapping
            dist_p = self._get_dist_var_by_serial_var(p, partitioned_main_prog)
            if g is None:
                dist_g = None
            else:
                assert g.name in self._serial2dist_varname_mapping
200 201
                dist_g = self._get_dist_var_by_serial_var(
                    g, partitioned_main_prog)
202 203 204 205 206 207 208 209
            partitioned_params_and_grads.append((dist_p, dist_g))

        return partitioned_main_prog, partitioned_params_and_grads

    def partition_block(self, ref_block, target_block):

        dist_op_context = self._dist_context.dist_op_context
        serial_ops = ref_block.ops
210

211 212 213 214 215 216 217 218 219
        last_fwd_op_idx = -1
        for idx, op in enumerate(ref_block.ops):
            if is_loss_op(op):
                last_fwd_op_idx = idx
                break

        if last_fwd_op_idx == -1:
            last_fwd_op_idx = len(ref_block.ops)

220 221 222
        # init mapping
        forward_op_id2forward_op = {}
        for idx in range(len(serial_ops)):
223
            if idx <= last_fwd_op_idx:
224 225
                forward_op_id2forward_op[
                    serial_ops[idx].desc.original_id()] = serial_ops[idx]
226

227
        appended_grad_times = 0
228
        # partiiton
229 230
        for idx, op in enumerate(serial_ops):

231 232
            if is_backward_op(op) and (is_forward_op(serial_ops[idx - 1])
                                       or is_loss_op(serial_ops[idx - 1])):
233
                appended_grad_times += 1
234 235 236 237 238

            # partititon input variables
            for serial_input_varname in op.desc.input_arg_names():
                if serial_input_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_input_varname + self._dist_varname_suffix
239 240 241 242
                    if ref_block.has_var(serial_input_varname):
                        _partition_var(self._dist_context, ref_block,
                                       target_block, serial_input_varname,
                                       new_varname)
243 244 245 246 247 248 249 250 251 252
                    else:
                        assert serial_input_varname in __varname_not_in_block__

                    self._serial2dist_varname_mapping[
                        serial_input_varname] = new_varname

            # partition output vars
            for serial_output_varname in op.desc.output_arg_names():
                if serial_output_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_output_varname + self._dist_varname_suffix
253
                    _partition_var(self._dist_context, ref_block, target_block,
254 255 256 257 258
                                   serial_output_varname, new_varname)
                    self._serial2dist_varname_mapping[
                        serial_output_varname] = new_varname

            # partition op
259 260
            op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
            if is_forward_op(op) or op_dist_attr.is_recompute:
261 262 263 264 265 266 267 268 269 270
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_forward_impl = _get_dist_op_forward_implement(
                    op, self._dist_context)
                dist_op_forward_impl.forward(self._dist_context, **kinputs,
                                             **koutputs)

            elif is_backward_op(op):
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_backward_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
271 272 273 274 275
                grad_var_to_var = self._dist_context.dist_op_context.grad_var_to_var[
                    appended_grad_times]
                dist_op_backward_impl.backward(
                    self._dist_context, **kinputs, **koutputs,
                    **{"grad_var_to_var": grad_var_to_var})
276
            elif is_optimize_op(op):
277
                # NOTE: BACKWARD_ONLY_DIST_OPS's op_role must 2 because of 1F1B PASS
278
                kinputs, koutputs = dist_op_context.prepare_context(op)
279 280 281
                dist_op_opt_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
                dist_op_opt_impl.backward(self._dist_context, **kinputs,
282
                                          **koutputs, **{"grad_var_to_var": {}})
283
            else:
284
                raise NotImplementedError(
285 286
                    "partitioner only support forward and backward, optimize ops, but got {}"
                    .format(str(op)))
287

288 289 290 291 292 293
    def _is_valid_annotated_program(self, program):

        # TODO (ZJ-LIANG) should check all block
        ops = program.global_block().ops
        vars_ = program.list_vars()
        op_dist_attrs = [
294
            self._dist_context.get_op_dist_attr_for_program(op) for op in ops
295 296
        ]
        var_dist_attrs = [
297
            self._dist_context.get_tensor_dist_attr_for_program(var)
298
            for var in vars_ if (var.type not in __not_shape_var_type__)
299 300 301 302 303 304 305 306 307
        ]

        all_ops_annotated = all(dist_attr is not None
                                for dist_attr in op_dist_attrs)
        all_vars_annotated = all(dist_attr is not None
                                 for dist_attr in var_dist_attrs)

        return all_ops_annotated and all_vars_annotated

308 309 310 311 312 313 314 315
    def _get_dist_var_by_serial_var(self, serial_var, partitioned_main_prog):

        block_idx = serial_var.block.idx
        target_block = partitioned_main_prog.blocks[block_idx]
        dist_var_name = self._serial2dist_varname_mapping[serial_var.name]
        assert target_block.has_var(dist_var_name)
        return target_block.var(dist_var_name)

316 317 318 319

def _get_dist_shape(var, dist_attr):

    var_shape = var.shape
320 321
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
322 323 324
    if mapping == []:
        return var_shape

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            assert var_shape[idx] % mesh[mapping[
                idx]] == 0, "un-event partition: var_shape[idx]=[{}], mesh[{}]".format(
                    var_shape[idx], mesh[mapping[idx]])
            new_shape.append(var_shape[idx] // mesh[mapping[idx]])

    return new_shape


342
def _partition_parameter(dist_context, src_var, dst_block, dst_varname,
343 344
                         dst_shape):
    # NOTE hack to copied Parameter
345
    # not initialized parameter, need to initialize it
346 347 348 349 350 351 352
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

353 354 355 356 357 358 359 360 361 362 363
    param = Parameter(block=dst_block,
                      type=src_var.type,
                      name=dst_varname,
                      shape=dst_shape,
                      dtype=src_var.dtype,
                      lod_level=src_var.lod_level,
                      error_clip=src_var.error_clip,
                      stop_gradient=src_var.stop_gradient,
                      is_data=src_var.is_data,
                      belong_to_optimizer=src_var.belong_to_optimizer,
                      **copied_kwargs)
364

365
    return param
366 367


368 369
def _partition_intermediate_var(dist_context, src_var, dst_block, dst_varname,
                                dst_shape):
370 371 372 373 374 375 376 377 378 379
    var = dst_block.create_var(type=src_var.type,
                               name=dst_varname,
                               shape=dst_shape,
                               dtype=src_var.dtype,
                               lod_level=src_var.lod_level,
                               persistable=src_var.persistable,
                               error_clip=src_var.error_clip,
                               stop_gradient=src_var.stop_gradient,
                               is_data=src_var.is_data,
                               belong_to_optimizer=src_var.belong_to_optimizer)
380

381
    return var
382 383


384
def _partition_var(dist_context, src_block, dst_block, src_varname,
385 386 387 388 389 390
                   dst_varname):
    """
    partition include: split + replicate
    """
    src_var = src_block.var(src_varname)

391
    if src_var.type in __not_shape_var_type__:
392
        persist = getattr(src_var, 'persistable', False)
393 394 395 396
        new_var = dst_block.create_var(type=src_var.type,
                                       name=dst_varname,
                                       persistable=persist,
                                       stop_gradient=True)
J
JZ-LIANG 已提交
397
        target_shape = None
398
    else:
399
        dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var)
400 401 402
        target_shape = _get_dist_shape(src_var, dist_attr)

        if isinstance(src_var, Parameter):
403 404
            new_var = _partition_parameter(dist_context, src_var, dst_block,
                                           dst_varname, target_shape)
405
        else:
406 407 408
            new_var = _partition_intermediate_var(dist_context, src_var,
                                                  dst_block, dst_varname,
                                                  target_shape)
409 410 411 412 413 414

    dist_attr = copy.deepcopy(
        dist_context.get_tensor_dist_attr_for_program(src_var))
    assert dist_attr is not None
    dist_context.set_tensor_dist_attr_for_program(new_var, dist_attr)

J
JZ-LIANG 已提交
415
    return target_shape
416 417


418 419 420
def _get_dist_op_backward_implement(backward_op, dist_context,
                                    forward_op_id2forward_op):
    dist_op_context = dist_context.dist_op_context
421 422 423
    if backward_op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
        forward_op_id = dist_op_context.grad_op_id_to_op_id[
            backward_op.desc.original_id()]
424 425 426
        forward_op = forward_op_id2forward_op[forward_op_id]
        forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
            forward_op)
427 428 429 430 431
        dist_op_impl_container = get_distributed_operator_impl_container(
            forward_op_dist_attr.impl_type)
        dist_op_impl = dist_op_impl_container.get_impl(
            forward_op_dist_attr.impl_idx)
        return dist_op_impl
432

433
    # # NOTE trick for dist ops that only have backward implement
J
JZ-LIANG 已提交
434 435
    if backward_op.type in BACKWARD_ONLY_DIST_OPS:
        op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op)
436 437
        assert op_dist_attr.impl_idx >= 0
        dist_op_impl = get_distributed_operator_impl_container(
Z
zhaoyingli 已提交
438
            op_dist_attr.impl_type).get_impl(op_dist_attr.impl_idx)
439
        return dist_op_impl
J
JZ-LIANG 已提交
440 441 442

    dist_op = get_distributed_operator_impl_container("default")
    return dist_op.get_impl(0)
443 444 445 446


def _get_dist_op_forward_implement(forward_op, dist_context):
    dist_attr = dist_context.get_op_dist_attr_for_program(forward_op)
447 448 449 450
    dist_op_impl_container = get_distributed_operator_impl_container(
        dist_attr.impl_type)
    dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx)
    return dist_op_impl