tensor.cc 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/include/tensor.h"

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22
#include "paddle/pten/api/include/utils.h"
23 24 25
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/api/lib/utils/storage.h"
26
#include "paddle/pten/core/compat_utils.h"
27
#include "paddle/pten/core/convert_utils.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_base.h"
#include "paddle/pten/core/tensor_meta.h"

/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, pten], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"

namespace paddle {
namespace experimental {

namespace detail {

inline bool IsDenseTensor(
    const std::shared_ptr<pten::TensorBase> &tensor_impl) {
  return tensor_impl->type_info().name() == "DenseTensor";
}

}  // namespace detail

70 71 72
// declare cast api
Tensor cast(const Tensor &x, DataType out_dtype);

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

Tensor::Tensor(std::shared_ptr<pten::TensorBase> tensor_impl)
    : impl_(std::move(tensor_impl)) {
  PADDLE_ENFORCE_NOT_NULL(impl_,
                          platform::errors::InvalidArgument(
                              "TensorImpl with nullptr is not supported"));
}

Tensor::Tensor(const PlaceType &place)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim({}),
                                          pten::DataLayout::NCHW))))) {}

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim(shape),
                                          pten::DataLayout::NCHW))))) {}

/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

paddle::framework::DDim Tensor::dims() const { return impl_->dims(); }

std::vector<int64_t> Tensor::shape() const {
  return paddle::framework::vectorize<int64_t>(impl_->dims());
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
                  "`paddle::experimental::full` method to create a new Tensor "
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
  if (detail::IsDenseTensor(impl_)) {
    std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->set_meta(
        pten::DenseTensorMeta(dtype(), framework::make_ddim(shape)));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Only support reshape operation on DenseTensor now."));
  }
128 129
}

130
DataType Tensor::dtype() const { return impl_->dtype(); }
131

132
DataType Tensor::type() const { return impl_->dtype(); }
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

DataLayout Tensor::layout() const { return impl_->layout(); }

/* Part 3: Device and Backend methods */

PlaceType Tensor::place() const {
  return ConvertInnerPlaceToExtPlace(impl_->place());
}

paddle::platform::Place Tensor::inner_place() const { return impl_->place(); }

bool Tensor::is_cpu() const {
  return paddle::platform::is_cpu_place(impl_->place());
}

bool Tensor::is_cuda() const {
  return paddle::platform::is_gpu_place(impl_->place());
}

/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
  if (detail::IsDenseTensor(impl_)) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)
        ->mutable_data<T>();
  }
  return nullptr;
}

163 164 165 166 167 168 169 170 171
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
template PADDLE_API paddle::platform::complex<float>
172
    *Tensor::mutable_data<paddle::platform::complex<float>>();
173
template PADDLE_API paddle::platform::complex<double>
174
    *Tensor::mutable_data<paddle::platform::complex<double>>();
175
template PADDLE_API paddle::platform::float16 *
176 177 178 179 180 181 182 183 184 185 186 187 188
Tensor::mutable_data<paddle::platform::float16>();

template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  auto inner_place = ConvertExtPlaceToInnerPlace(place);
  PADDLE_ENFORCE_EQ(
      platform::is_same_place(inner_place, impl_->place()),
      true,
      platform::errors::Unimplemented("Modification of tensor place through "
                                      "mutable_data is not supported now"));
  return mutable_data<T>();
}

189 190
template PADDLE_API float *Tensor::mutable_data<float>(const PlaceType &place);
template PADDLE_API double *Tensor::mutable_data<double>(
191
    const PlaceType &place);
192
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(
193
    const PlaceType &place);
194
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(
195
    const PlaceType &place);
196
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(
197
    const PlaceType &place);
198
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(
199
    const PlaceType &place);
200
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(
201
    const PlaceType &place);
202 203
template PADDLE_API bool *Tensor::mutable_data<bool>(const PlaceType &place);
template PADDLE_API paddle::platform::complex<float> *
204
Tensor::mutable_data<paddle::platform::complex<float>>(const PlaceType &place);
205
template PADDLE_API paddle::platform::complex<double> *
206
Tensor::mutable_data<paddle::platform::complex<double>>(const PlaceType &place);
207
template PADDLE_API paddle::platform::float16 *
208 209 210 211 212 213 214 215 216 217
Tensor::mutable_data<paddle::platform::float16>(const PlaceType &place);

template <typename T>
const T *Tensor::data() const {
  if (detail::IsDenseTensor(impl_)) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->data<T>();
  }
  return nullptr;
}

218 219 220 221 222 223 224 225 226 227
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const uint16_t *Tensor::data<uint16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
template PADDLE_API const paddle::platform::complex<float>
228
    *Tensor::data<paddle::platform::complex<float>>() const;
229
template PADDLE_API const paddle::platform::complex<double>
230
    *Tensor::data<paddle::platform::complex<double>>() const;
231
template PADDLE_API const paddle::platform::float16 *
232
Tensor::data<paddle::platform::float16>() const;
233
template PADDLE_API const paddle::platform::bfloat16 *
234
Tensor::data<paddle::platform::bfloat16>() const;
235 236 237 238 239 240 241 242 243 244

template <typename T>
T *Tensor::data() {
  PADDLE_THROW(platform::errors::Unimplemented(
      "It is not currently supported to directly obtain the modifiable data "
      "address through the tensor::data<T>() method, please use the "
      "tensor::mutable_data<T>() method."));
  return nullptr;
}

245 246 247 248 249 250 251 252 253
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
template PADDLE_API paddle::platform::complex<float>
254
    *Tensor::data<paddle::platform::complex<float>>();
255
template PADDLE_API paddle::platform::complex<double>
256
    *Tensor::data<paddle::platform::complex<double>>();
257
template PADDLE_API paddle::platform::float16 *
258 259
Tensor::data<paddle::platform::float16>();

260
// TODO(chenweihang): replace slice impl by API
261
Tensor Tensor::slice(const int64_t begin_idx, const int64_t end_idx) const {
262 263 264 265 266 267 268 269
  if (detail::IsDenseTensor(impl_)) {
    return Tensor(std::make_shared<pten::DenseTensor>(
        std::move(pten::CompatibleDenseTensorUtils::Slice(
            std::dynamic_pointer_cast<pten::DenseTensor>(impl_).get(),
            begin_idx,
            end_idx))));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
270
        "Only support slice operation on DenseTensor now."));
271
  }
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
}

std::shared_ptr<pten::TensorBase> Tensor::impl() const { return impl_; }

void Tensor::set_impl(const std::shared_ptr<pten::TensorBase> &impl) {
  impl_ = impl;
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

/* Part 5: Data Transform methods */

template <typename T>
Tensor Tensor::copy_to(const PlaceType &target_place) const {
290
  LOG(WARNING) << "The Tensor's `copy_to` method is deprecated since version "
291
                  "2.3, and will be removed in version 2.4, please use "
292
                  "`copy_to` method without template argument instead. "
293 294
                  "reason: copying a Tensor to another device does not need "
                  "to specify the data type template argument.";
295
  return copy_to(ConvertExtPlaceToBackend(target_place), /*blocking=*/false);
296 297
}

298
template PADDLE_API Tensor
299
Tensor::copy_to<float>(const PlaceType &target_place) const;
300
template PADDLE_API Tensor
301
Tensor::copy_to<double>(const PlaceType &target_place) const;
302
template PADDLE_API Tensor
303
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
304
template PADDLE_API Tensor
305
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
306
template PADDLE_API Tensor
307
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
308
template PADDLE_API Tensor
309
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
310
template PADDLE_API Tensor
311
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
312
template PADDLE_API Tensor
313
Tensor::copy_to<bool>(const PlaceType &target_place) const;
314
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<float>>(
315
    const PlaceType &target_place) const;
316
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<double>>(
317
    const PlaceType &target_place) const;
318
template PADDLE_API Tensor
319 320
Tensor::copy_to<paddle::platform::float16>(const PlaceType &target_place) const;

321 322
Tensor Tensor::copy_to(Backend backend, bool blocking) const {
  return experimental::copy_to(*this, backend, blocking);
323 324
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
void Tensor::copy_(const Tensor &src, bool blocking) {
  if (!src.is_initialized()) {
    return;
  }
  VLOG(3) << "Deep copy Tensor from " << src.name() << " to " << name();
  if (defined()) {
    PADDLE_ENFORCE_EQ(dtype(),
                      src.dtype(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          name(),
                          src.name()));
    PADDLE_ENFORCE_EQ(impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          name(),
                          src.name()));
  }
  auto copy_tensor =
      src.copy_to(pten::TransToPtenBackend(src.inner_place()), blocking);
  set_impl(copy_tensor.impl());
}
350 351
Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
352 353 354 355 356 357
}

/* Part 6: Status utils methods */

bool Tensor::defined() const { return impl_ != nullptr; }

358
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
359 360

bool Tensor::is_initialized() const {
361
  return defined() && impl_->initialized();
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
}

void Tensor::reset() { impl_.reset(); }

/* Part 7: Operator overloading */

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

}  // namespace experimental
}  // namespace paddle