tensor.cc 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/include/tensor.h"

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22
#include "paddle/pten/api/include/utils.h"
23 24 25
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/api/lib/utils/storage.h"
26
#include "paddle/pten/core/compat_utils.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_base.h"
#include "paddle/pten/core/tensor_meta.h"

/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, pten], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"

namespace paddle {
namespace experimental {

namespace detail {

inline bool IsDenseTensor(
    const std::shared_ptr<pten::TensorBase> &tensor_impl) {
  return tensor_impl->type_info().name() == "DenseTensor";
}

}  // namespace detail

69 70 71
// declare cast api
Tensor cast(const Tensor &x, DataType out_dtype);

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

Tensor::Tensor(std::shared_ptr<pten::TensorBase> tensor_impl)
    : impl_(std::move(tensor_impl)) {
  PADDLE_ENFORCE_NOT_NULL(impl_,
                          platform::errors::InvalidArgument(
                              "TensorImpl with nullptr is not supported"));
}

Tensor::Tensor(const PlaceType &place)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim({}),
                                          pten::DataLayout::NCHW))))) {}

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim(shape),
                                          pten::DataLayout::NCHW))))) {}

/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

paddle::framework::DDim Tensor::dims() const { return impl_->dims(); }

std::vector<int64_t> Tensor::shape() const {
  return paddle::framework::vectorize<int64_t>(impl_->dims());
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
                  "`paddle::experimental::full` method to create a new Tensor "
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
  if (detail::IsDenseTensor(impl_)) {
    std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->set_meta(
        pten::DenseTensorMeta(dtype(), framework::make_ddim(shape)));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Only support reshape operation on DenseTensor now."));
  }
127 128
}

129
DataType Tensor::dtype() const { return impl_->dtype(); }
130

131
DataType Tensor::type() const { return impl_->dtype(); }
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

DataLayout Tensor::layout() const { return impl_->layout(); }

/* Part 3: Device and Backend methods */

PlaceType Tensor::place() const {
  return ConvertInnerPlaceToExtPlace(impl_->place());
}

paddle::platform::Place Tensor::inner_place() const { return impl_->place(); }

bool Tensor::is_cpu() const {
  return paddle::platform::is_cpu_place(impl_->place());
}

bool Tensor::is_cuda() const {
  return paddle::platform::is_gpu_place(impl_->place());
}

/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
  if (detail::IsDenseTensor(impl_)) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)
        ->mutable_data<T>();
  }
  return nullptr;
}

162 163 164 165 166 167 168 169 170
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
template PADDLE_API paddle::platform::complex<float>
171
    *Tensor::mutable_data<paddle::platform::complex<float>>();
172
template PADDLE_API paddle::platform::complex<double>
173
    *Tensor::mutable_data<paddle::platform::complex<double>>();
174
template PADDLE_API paddle::platform::float16 *
175 176 177 178 179 180 181 182 183 184 185 186 187
Tensor::mutable_data<paddle::platform::float16>();

template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  auto inner_place = ConvertExtPlaceToInnerPlace(place);
  PADDLE_ENFORCE_EQ(
      platform::is_same_place(inner_place, impl_->place()),
      true,
      platform::errors::Unimplemented("Modification of tensor place through "
                                      "mutable_data is not supported now"));
  return mutable_data<T>();
}

188 189
template PADDLE_API float *Tensor::mutable_data<float>(const PlaceType &place);
template PADDLE_API double *Tensor::mutable_data<double>(
190
    const PlaceType &place);
191
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(
192
    const PlaceType &place);
193
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(
194
    const PlaceType &place);
195
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(
196
    const PlaceType &place);
197
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(
198
    const PlaceType &place);
199
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(
200
    const PlaceType &place);
201 202
template PADDLE_API bool *Tensor::mutable_data<bool>(const PlaceType &place);
template PADDLE_API paddle::platform::complex<float> *
203
Tensor::mutable_data<paddle::platform::complex<float>>(const PlaceType &place);
204
template PADDLE_API paddle::platform::complex<double> *
205
Tensor::mutable_data<paddle::platform::complex<double>>(const PlaceType &place);
206
template PADDLE_API paddle::platform::float16 *
207 208 209 210 211 212 213 214 215 216
Tensor::mutable_data<paddle::platform::float16>(const PlaceType &place);

template <typename T>
const T *Tensor::data() const {
  if (detail::IsDenseTensor(impl_)) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->data<T>();
  }
  return nullptr;
}

217 218 219 220 221 222 223 224 225 226
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const uint16_t *Tensor::data<uint16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
template PADDLE_API const paddle::platform::complex<float>
227
    *Tensor::data<paddle::platform::complex<float>>() const;
228
template PADDLE_API const paddle::platform::complex<double>
229
    *Tensor::data<paddle::platform::complex<double>>() const;
230
template PADDLE_API const paddle::platform::float16 *
231
Tensor::data<paddle::platform::float16>() const;
232
template PADDLE_API const paddle::platform::bfloat16 *
233
Tensor::data<paddle::platform::bfloat16>() const;
234 235 236 237 238 239 240 241 242 243

template <typename T>
T *Tensor::data() {
  PADDLE_THROW(platform::errors::Unimplemented(
      "It is not currently supported to directly obtain the modifiable data "
      "address through the tensor::data<T>() method, please use the "
      "tensor::mutable_data<T>() method."));
  return nullptr;
}

244 245 246 247 248 249 250 251 252
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
template PADDLE_API paddle::platform::complex<float>
253
    *Tensor::data<paddle::platform::complex<float>>();
254
template PADDLE_API paddle::platform::complex<double>
255
    *Tensor::data<paddle::platform::complex<double>>();
256
template PADDLE_API paddle::platform::float16 *
257 258
Tensor::data<paddle::platform::float16>();

259
// TODO(chenweihang): replace slice impl by API
260
Tensor Tensor::slice(const int64_t begin_idx, const int64_t end_idx) const {
261 262 263 264 265 266 267 268
  if (detail::IsDenseTensor(impl_)) {
    return Tensor(std::make_shared<pten::DenseTensor>(
        std::move(pten::CompatibleDenseTensorUtils::Slice(
            std::dynamic_pointer_cast<pten::DenseTensor>(impl_).get(),
            begin_idx,
            end_idx))));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
269
        "Only support slice operation on DenseTensor now."));
270
  }
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
}

std::shared_ptr<pten::TensorBase> Tensor::impl() const { return impl_; }

void Tensor::set_impl(const std::shared_ptr<pten::TensorBase> &impl) {
  impl_ = impl;
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

/* Part 5: Data Transform methods */

template <typename T>
Tensor Tensor::copy_to(const PlaceType &target_place) const {
289
  LOG(WARNING) << "The Tensor's `copy_to` method is deprecated since version "
290
                  "2.3, and will be removed in version 2.4, please use "
291
                  "`copy_to` method without template argument instead. "
292 293
                  "reason: copying a Tensor to another device does not need "
                  "to specify the data type template argument.";
294
  return copy_to(ConvertExtPlaceToBackend(target_place), /*blocking=*/false);
295 296
}

297
template PADDLE_API Tensor
298
Tensor::copy_to<float>(const PlaceType &target_place) const;
299
template PADDLE_API Tensor
300
Tensor::copy_to<double>(const PlaceType &target_place) const;
301
template PADDLE_API Tensor
302
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
303
template PADDLE_API Tensor
304
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
305
template PADDLE_API Tensor
306
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
307
template PADDLE_API Tensor
308
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
309
template PADDLE_API Tensor
310
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
311
template PADDLE_API Tensor
312
Tensor::copy_to<bool>(const PlaceType &target_place) const;
313
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<float>>(
314
    const PlaceType &target_place) const;
315
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<double>>(
316
    const PlaceType &target_place) const;
317
template PADDLE_API Tensor
318 319
Tensor::copy_to<paddle::platform::float16>(const PlaceType &target_place) const;

320 321
Tensor Tensor::copy_to(Backend backend, bool blocking) const {
  return experimental::copy_to(*this, backend, blocking);
322 323
}

324 325
Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
326 327 328 329 330 331
}

/* Part 6: Status utils methods */

bool Tensor::defined() const { return impl_ != nullptr; }

332
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
333 334

bool Tensor::is_initialized() const {
335
  return defined() && impl_->initialized();
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
}

void Tensor::reset() { impl_.reset(); }

/* Part 7: Operator overloading */

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

}  // namespace experimental
}  // namespace paddle