inplace_op_pass.cc 18.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/inplace_op_pass.h"
#include <algorithm>
#include <deque>
#include <iterator>
Z
Zhen Wang 已提交
19
#include <memory>
L
liuwei1031 已提交
20 21
#include <queue>
#include <sstream>
D
dzhwinter 已提交
22 23 24 25 26 27
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/memory_optimize_pass.h"
D
dzhwinter 已提交
28
#include "paddle/fluid/framework/ir/graph_helper.h"
D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "paddle/fluid/framework/op_info.h"

// NOTE(dzhwinter): inplace means one op output variable reuse the input space.
// By our design, one operator only can read its input(const Variable),
// write its output(non-const Variable). If one operator is inplaced, means
// user have chance to write the space before reading happens.
// Especially when some optimize code writing style is applied.
//
//
// /* wrong case in operator */
// /*In this case, a larger allocation is allocated, input content is lost*/
// const Tensor* in = ctx.Input<Tensor>("In")
// Tensor* out = ctx.Output<Tensor>("Out");
// auto* out_ptr = out->mutable_data<T>(ctx.GetPlace());
// out_ptr[0] = 0;  // input contect is overwrited.

D
dzhwinter 已提交
45 46 47
// NOTE(dzhwinter):
// Only for backward compacity and stable. if enable_inplace_whitelist is turn
// on.
D
dzhwinter 已提交
48 49 50
// only the ops in whitelist will be use inplace strategy.
// if not, all the op will be inplaced if it registered with InplaceClass
DEFINE_bool(
D
dzhwinter 已提交
51
    enable_inplace_whitelist, false,
D
dzhwinter 已提交
52 53 54
    "If this option turns on, only these op in whitelist can be inplaced."
    "If it turns off, all of the running op can be candidate of inplaced op."
    "Such as scale, elementwise_add"
D
dzhwinter 已提交
55
    "By default, it's turned off");
D
dzhwinter 已提交
56

D
dzhwinter 已提交
57 58
DECLARE_string(memory_optimize_debug);

D
dzhwinter 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// clang-format off
const std::string kInplacedOpWhiteList[] = { // NOLINT
    "sigmoid",
    "exp",
    "relu",
    "tanh",
    "sqrt",
    "ceil",
    "floor",
    "reciprocal",
    "relu6",
    "soft_relu",
    "hard_sigmoid",
    "batch_norm",
    "batch_norm_grad",
    "sum",
    "sum_grad",
    "scale",
    "reshape",
    "elementwise_add",
    "elementwise_add_grad",
};
// clang-format on

namespace paddle {
namespace framework {
namespace details {

87
static inline ir::Node* GetNextCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
88 89 90 91
  // if next op is inplaced, then return the output var
  // otherwise return nullptr
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
  ir::Node* inplaced_var = nullptr;
92 93 94 95 96
  for (auto* next_op : var->outputs) {
    for (auto* output : next_op->outputs) {
      if (output->IsVar() && !output->IsCtrlVar() &&
          output->Name() == var->Name()) {
        inplaced_var = output;
D
dzhwinter 已提交
97 98 99 100 101 102
      }
    }
  }
  return inplaced_var;
}

103
static inline ir::Node* GetPrevCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
104
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
D
dzhwinter 已提交
105
  if (var->inputs.empty()) return nullptr;
106 107 108 109 110 111 112 113 114 115 116
  auto* prev_op = var->inputs.at(0);
  auto input_it = std::find_if(prev_op->inputs.begin(), prev_op->inputs.end(),
                               [&](ir::Node* node) {
                                 if (node->IsVar() && !node->IsCtrlVar() &&
                                     node->Name() == var->Name()) {
                                   return true;
                                 } else {
                                   return false;
                                 }
                               });
  return input_it == prev_op->inputs.end() ? nullptr : *input_it;
D
dzhwinter 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
}

InplacePass::InplacePass() : Pass() {
  if (FLAGS_enable_inplace_whitelist) {
    for (auto& s : kInplacedOpWhiteList) {
      whitelist_.emplace(s);
    }
  }
}

void InplacePass::InitSSAGraphNodes() const {
  std::unordered_map<std::string, std::unordered_set<ir::Node*>> all_vars;
  for (auto* op : view_.AllOps()) {
    for (auto* node : op->inputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
    for (auto* node : op->outputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
  }
}

147
void InplacePass::ApplyImpl(ir::Graph* graph) const {
D
dzhwinter 已提交
148
  var_nodes_.clear();
149
  view_.Build(graph);
D
dzhwinter 已提交
150 151
  InitSSAGraphNodes();

L
liuwei1031 已提交
152
  auto cnt = 0;
D
dzhwinter 已提交
153
  for (auto* op : view_.AllOps()) {
L
liuwei1031 已提交
154
    VLOG(4) << "Handle op " << cnt++ << ": " << op->Name();
D
dzhwinter 已提交
155 156
    if (FLAGS_enable_inplace_whitelist && !whitelist_.count(op->Name()))
      continue;
157
    TryInplaceOpInputOutput(op, graph);
D
dzhwinter 已提交
158 159 160 161 162 163 164
  }
}

void InplacePass::InplaceModifyDesc(const std::string& var,
                                    const std::string& cache_var,
                                    const size_t& idx) const {
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
165
    ir::Node* op = view_.AllOps()[i];
D
dzhwinter 已提交
166 167 168 169
    PADDLE_ENFORCE(op->IsOp() && op->Op());
    auto* op_desc = op->Op();
    op_desc->RenameInput(var, cache_var);
    op_desc->RenameOutput(var, cache_var);
170

D
dzhwinter 已提交
171 172 173 174
    op_desc->Flush();
  }
}

D
dzhwinter 已提交
175 176 177
const NodeSwapQueue InplacePass::TryInplaceModifyVar(
    const std::string& var, const std::string& cache_var, const size_t& idx,
    ir::Graph* graph) const {
D
dzhwinter 已提交
178 179 180 181 182
  PADDLE_ENFORCE(var_nodes_[var].size() >= 1 &&
                 var_nodes_[var].at(0)->Var() != nullptr);
  std::unique_ptr<VarDesc> var_desc(new VarDesc(*var_nodes_[var].at(0)->Var()));
  var_desc->SetName(cache_var);

D
dzhwinter 已提交
183
  NodeSwapQueue swap_nodes;
D
dzhwinter 已提交
184

D
dzhwinter 已提交
185 186 187 188 189 190 191
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
    auto* op = view_.AllOps()[i];

    // redirect the input to the latest version of cache_var
    for (auto* node : op->inputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
D
dzhwinter 已提交
192

D
dzhwinter 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205
        // swap node to cache_node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        PADDLE_ENFORCE(node->inputs.size() == 1 && node->inputs[0]->IsOp());
        auto* prev_op = node->inputs[0];
        std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), node,
                     cache_node);
        cache_node->inputs.emplace_back(prev_op);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }

D
dzhwinter 已提交
206
        swap_nodes.emplace_back(std::make_pair(node, cache_node));
D
dzhwinter 已提交
207 208
      }
    }
D
dzhwinter 已提交
209 210 211

    // if we need to rename the output,
    // always create a newer version of cache_var
D
dzhwinter 已提交
212 213 214 215 216 217 218 219 220 221 222 223
    for (auto* node : op->outputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        // swap node to cache node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        cache_node->inputs.emplace_back(op);
        std::replace(op->outputs.begin(), op->outputs.end(), node, cache_node);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
D
dzhwinter 已提交
224 225

        swap_nodes.emplace_back(std::make_pair(node, cache_node));
D
dzhwinter 已提交
226 227 228
      }
    }
  }
D
dzhwinter 已提交
229

D
dzhwinter 已提交
230 231 232
  return swap_nodes;
}

D
dzhwinter 已提交
233
void InplacePass::CommitModify(const NodeSwapQueue& swap_nodes,
D
dzhwinter 已提交
234 235
                               ir::Graph* graph) const {
  for (auto& pair : swap_nodes) {
D
dzhwinter 已提交
236 237 238 239
    auto *node = pair.first, *cache_node = pair.second;
    const std::string var = node->Name(), cache_var = cache_node->Name();
    var_nodes_[cache_var].emplace_back(cache_node);
    graph->RemoveNode(node);
D
dzhwinter 已提交
240
    auto& nodes = var_nodes_.at(var);
D
dzhwinter 已提交
241 242 243
    // release unused var in graph. Because python side memory optimize
    // may reused the var in same name, so we only clear the var node
    // after current inplaced index.
D
dzhwinter 已提交
244 245 246 247
    nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
  }
}

D
dzhwinter 已提交
248
void InplacePass::WithdrawModify(const NodeSwapQueue& nodes,
D
dzhwinter 已提交
249 250
                                 ir::Graph* graph) const {
  for (auto& pair : nodes) {
D
dzhwinter 已提交
251 252 253 254 255 256 257
    auto *node = pair.first, *cache_node = pair.second;
    const std::string var = node->Name(), cache_var = cache_node->Name();
    auto* prev_op = node->inputs[0];
    std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), cache_node,
                 node);
    for (auto* next_op : node->outputs) {
      std::replace(next_op->inputs.begin(), next_op->inputs.end(), cache_node,
D
dzhwinter 已提交
258
                   node);
D
dzhwinter 已提交
259
    }
D
dzhwinter 已提交
260
    graph->RemoveNode(cache_node);
D
dzhwinter 已提交
261 262 263 264 265
  }
}

void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
                                          ir::Graph* graph) const {
D
dzhwinter 已提交
266
  VLOG(4) << "Try to inplace op " << op->Name();
D
dzhwinter 已提交
267
  // some pre-requirments need to meet if the op want to inplaced.
L
liuwei1031 已提交
268
  PADDLE_ENFORCE(op->Op() != nullptr, "op_desc is nullptr");
D
dzhwinter 已提交
269

D
dzhwinter 已提交
270 271 272
  auto* op_desc = op->Op();
  auto& infer_inplace =
      OpInfoMap::Instance().Get(op_desc->Type()).infer_inplace_;
D
dzhwinter 已提交
273 274

  // 1. infer_inplace_ is registered.
D
dzhwinter 已提交
275 276 277 278
  if (!static_cast<bool>(infer_inplace)) return;
  PADDLE_ENFORCE(static_cast<bool>(infer_inplace),
                 "%s's infer_inplace has not been registered", op_desc->Type());

L
liuwei1031 已提交
279
  auto in_to_outs = infer_inplace(*op_desc);
D
dzhwinter 已提交
280 281 282 283 284 285

  auto& all_ops = view_.AllOps();
  auto cursor = std::find(all_ops.begin(), all_ops.end(), op);
  size_t idx = std::distance(all_ops.begin(), cursor);

  for (auto& pair : in_to_outs) {
L
liuwei1031 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    auto& in_para_name = pair.first;
    auto& out_para_name = pair.second;

    auto input_vars = op->Op()->Input(in_para_name);
    if (!input_vars.size()) {
      VLOG(4) << "Parameter " << in_para_name << " is empty skip "
              << in_para_name << " => " << out_para_name << " pair";
      continue;
    }
    auto output_vars = op->Op()->Output(out_para_name);
    if (!output_vars.size()) {
      VLOG(4) << "Parameter " << out_para_name << " is empty skip "
              << in_para_name << " => " << out_para_name << " pair";
      continue;
    }
    auto in_var_name = input_vars.at(0);
    auto out_var_name = output_vars.at(0);
D
dzhwinter 已提交
303 304
    auto* in_node = view_.GetNodeByName(in_var_name, op->inputs);
    auto* out_node = view_.GetNodeByName(out_var_name, op->outputs);
D
dzhwinter 已提交
305

L
liuwei1031 已提交
306 307
    VLOG(4) << "Try to inplace " << in_var_name << " with " << out_var_name;

308 309 310 311 312 313
    if (var_nodes_[in_var_name].back() != in_node) {
      VLOG(4) << "SKIP since " << in_var_name
              << " is also used as output by other ops";
      continue;
    }

L
liuwei1031 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    bool can_replace = true;
    if (in_var_name == out_var_name) {
      can_replace = false;
      VLOG(4) << "SKIP: Input variable " << in_var_name << " & Output variable "
              << out_var_name << " are the same";
    } else if (!NodeCanReused(in_node)) {
      can_replace = false;
      VLOG(4) << "SKIP: Input varialbe " << in_var_name << "cannot be reused";
    } else if (!NodeCanReused(out_node)) {
      can_replace = false;
      VLOG(4) << "SKIP: Output variable " << out_var_name
              << " cannot be reused";
    } else if (details::NodeSize(*in_node->Var()) !=
               details::NodeSize(*out_node->Var())) {
      can_replace = false;
      VLOG(4) << "SKIP: Input and Output varialbe size not match";
    }

    if (!can_replace) continue;

D
dzhwinter 已提交
334
    // 2. there is no external pending op on the input node
L
liuwei1031 已提交
335 336
    // if (view_.PendingOpsOnVar(in_node).size() > 1) {
    if (in_node->outputs.size() > 1 && !view_.CheckDeps(in_node, op)) {
D
dzhwinter 已提交
337 338 339 340
      VLOG(4) << string::Sprintf(
          "Skiped pair %s => %s. %s input has external dependency."
          "inplace such pair will overwrite the memory.",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
341 342
      continue;
    }
D
dzhwinter 已提交
343

344
    // 3. if output has been memory optimize by python(fluid.memory_optmize()).
D
dzhwinter 已提交
345
    // this candidate  can not be inplaced. Will be deprecated in the future.
D
dzhwinter 已提交
346
    if (view_.InSkipSet(out_node->Name())) {
D
dzhwinter 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
      VLOG(4) << string::Sprintf(
          "Skiped %s => %s reused previous memory block in python memory "
          "optmize,"
          "it inplace may generate a circle",
          out_var_name, in_var_name, op->Name());
      continue;
    }

    // Debug Interface. Which would be skipped by the pass.
    if (out_node->Name() == FLAGS_memory_optimize_debug) {
      VLOG(3) << "Skiped var by force. FLAGS_memory_optimize_debug="
              << out_node->Name();
      continue;
    }

D
dzhwinter 已提交
362 363 364 365
    // NOTE(dzhwinter):
    // two stage commit of inplaced process. if after inplace happens generate a
    // circle,
    // then withdraw the changes. Otherwise, safely add the node.
D
dzhwinter 已提交
366 367 368 369 370 371 372
    auto swap_nodes =
        TryInplaceModifyVar(out_var_name, in_var_name, idx, graph);

    if (!ir::HasCircle(*graph)) {
      VLOG(3) << string::Sprintf("!!! %s,  %s => %s inplaced", op->Name(),
                                 out_var_name, in_var_name);
      InplaceModifyDesc(out_var_name, in_var_name, idx);
D
dzhwinter 已提交
373
      CommitModify(swap_nodes, graph);
D
dzhwinter 已提交
374 375 376 377
    } else {
      VLOG(3) << string::Sprintf(
          "Skiped pair %s => %s, inplace will generate a circle. withdraw %s",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
378
      WithdrawModify(swap_nodes, graph);
D
dzhwinter 已提交
379
    }
D
dzhwinter 已提交
380 381 382
  }
}

L
liuwei1031 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
void GraphView::TopoSort(ir::Graph* graph) {
  //
  ops_.clear();
  auto deps_num = [](ir::Node* op) {
    auto cnt = 0;
    for (auto& var : op->inputs)
      if (var->inputs.size() > 0) ++cnt;
    return cnt;
  };

  std::queue<std::pair<ir::Node*, uint32_t>> ready_ops;

  int level = 0;
  auto nodes = graph->Nodes();
  std::unordered_map<ir::Node*, uint32_t> deps_map;
  for (auto& node : nodes) {
    if (node->IsOp() && node->Op() != nullptr) {
      deps_map[node] = deps_num(node);
      if (0 == deps_map[node]) {
        ready_ops.push({node, level});
      }
    }
  }

  while (!ready_ops.empty()) {
    auto item = ready_ops.front();
    ready_ops.pop();

    ops_.emplace_back(item.first);
    // record level when pop from queue
    op_level_[item.first] = item.second;

    for (auto node : item.first->outputs) {
      for (auto op : node->outputs) {
        --deps_map[op];
        if (deps_map[op] == 0) ready_ops.push({op, item.second + 1});
      }
    }
  }

  bool all_ops_checked = true;
  for (auto& node : nodes) {
    if (node->IsOp() && node->Op() != nullptr && deps_map[node] > 0) {
      all_ops_checked = false;
      break;
    }
  }

  PADDLE_ENFORCE(all_ops_checked, "All ops deps should be 0 after analysis");
}

// return true if current op node depeneds on all other op that use the same
// variable node
bool GraphView::CheckDeps(ir::Node* var, ir::Node* current_op) const {
  // get op list that rely on the same variable
  auto op_list = var->outputs;
  for (auto& op : op_list) {
    if (op == current_op) continue;

    VLOG(4) << "    GraphView::CheckDeps : " << op->Name() << "  & "
            << current_op->Name();
    if (!CheckOpDeps(op, current_op)) return false;
    VLOG(4) << "";
  }
  return true;
}

// check if op2 depends on op1's output
bool GraphView::CheckOpDeps(ir::Node* op1, ir::Node* op2) const {
452 453 454 455 456 457 458 459 460 461 462 463 464 465
  if (VLOG_IS_ON(4)) {
    auto print_op = [&](ir::Node* op, const char* name) {
      std::ostringstream os;
      os << "        " << name << " : " << op->Name() << " ";
      os << "Input args : ";
      for (auto& arg : op->inputs) os << arg->Name() << " ";
      os << "Output args : ";
      for (auto& arg : op->outputs) os << arg->Name() << " ";
      os << "Level : " << op_level_.at(op);
      VLOG(4) << os.str();
    };
    print_op(op1, "OP1");
    print_op(op2, "OP2");
  }
L
liuwei1031 已提交
466 467 468 469 470 471 472 473 474
  if (op1 == op2) return true;
  if (op_level_.at(op1) >= op_level_.at(op2)) return false;

  for (auto& var : op2->inputs)
    if (var->inputs.size() > 0 && CheckOpDeps(op1, var->inputs[0])) return true;

  return false;
}

D
dzhwinter 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
ir::Node* GraphView::GetNodeByName(const std::string& name,
                                   const std::vector<ir::Node*>& nodes) const {
  // nodes should be op->inputs/outputs
  // node in same node do have different name.
  std::unordered_set<std::string> nodes_in_op;
  bool has_dup_node =
      std::all_of(nodes.begin(), nodes.end(), [&nodes_in_op](ir::Node* node) {
        if (!node->IsVar() || node->IsCtrlVar() || node->Var() == nullptr) {
          if (nodes_in_op.count(node->Name())) return true;
          nodes_in_op.emplace(node->Name());
        }
        return false;
      });
  PADDLE_ENFORCE(has_dup_node == false, "nodes has same name!");
  ir::Node* node = nullptr;
  for (auto* it : nodes) {
    if (!it->IsVar() || it->IsCtrlVar() || it->Var() == nullptr) continue;
    if (it->Name() == name) {
      node = it;
      break;
    }
  }
  PADDLE_ENFORCE(node != nullptr,
                 string::Sprintf("Not found var %s in nodes!", name));
  return node;
}

std::vector<ir::Node*> GraphView::PendingOpsOnVar(ir::Node* node) {
503 504 505 506 507 508 509 510 511 512
  // get the pending ops depends on same var node.
  // because node also maybe a inplaced variable, so need to backtrack all the
  // previous inplaced vars.
  std::vector<ir::Node*> pending_ops;
  ir::Node* p = node;
  while (p != nullptr) {
    pending_ops.insert(pending_ops.end(), p->outputs.begin(), p->outputs.end());
    p = GetPrevCascadeInplacedVar(p);
  }
  return pending_ops;
D
dzhwinter 已提交
513 514
}

D
dzhwinter 已提交
515 516 517 518 519
void GraphView::Build(ir::Graph* g) {
  // track the var nodes in correct order.
  // Because we insert some new created node. Which may have data race between
  // nodes.
  // resolve data harzards depends on the var nodes in right order.
L
liuwei1031 已提交
520
  TopoSort(g);
D
dzhwinter 已提交
521 522 523 524

  // 2. track the nodes which used by parameter server.
  // these node can not be inplaced, otherwise trainer
  // pserver can not find each other name.
D
dzhwinter 已提交
525 526 527
  auto update_skip_set = [&](ir::Node* node) {
    for (auto& in : node->inputs) {
      if (in->IsVar() && in->Var() != nullptr) dup_nodes_.emplace(in->Name());
D
dzhwinter 已提交
528
    }
D
dzhwinter 已提交
529
    for (auto& out : node->outputs) {
D
dzhwinter 已提交
530 531
      if (out->IsVar() && out->Var() != nullptr)
        dup_nodes_.emplace(out->Name());
D
dzhwinter 已提交
532
    }
D
dzhwinter 已提交
533 534 535
  };
  for (auto& node : g->Nodes()) {
    if (!node->IsOp()) continue;
536 537 538
    // avoid optimize the variable used in sub-blocks
    if (OpHasSubBlock(node->Op())) update_skip_set(node);

D
dzhwinter 已提交
539 540 541
    if (node->Name() == "send") update_skip_set(node);
    if (node->Name() == "recv") update_skip_set(node);
    if (node->Name() == "prefetch") update_skip_set(node);
D
dzhwinter 已提交
542
  }
D
dzhwinter 已提交
543
}
D
dzhwinter 已提交
544

D
dzhwinter 已提交
545
const std::vector<ir::Node*>& GraphView::AllOps() { return ops_; }
D
dzhwinter 已提交
546

D
dzhwinter 已提交
547
bool GraphView::InSkipSet(const std::string& var) const {
D
dzhwinter 已提交
548 549 550
  return dup_nodes_.count(var);
}

D
dzhwinter 已提交
551 552 553 554 555
}  // namespace details
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(inplace_pass, paddle::framework::details::InplacePass);