inplace_op_pass.cc 14.6 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/inplace_op_pass.h"
#include <algorithm>
#include <deque>
#include <iterator>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/memory_optimize_pass.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/framework/ir/graph_helper.h"
D
dzhwinter 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "paddle/fluid/framework/op_info.h"

// NOTE(dzhwinter): inplace means one op output variable reuse the input space.
// By our design, one operator only can read its input(const Variable),
// write its output(non-const Variable). If one operator is inplaced, means
// user have chance to write the space before reading happens.
// Especially when some optimize code writing style is applied.
//
//
// /* wrong case in operator */
// /*In this case, a larger allocation is allocated, input content is lost*/
// const Tensor* in = ctx.Input<Tensor>("In")
// Tensor* out = ctx.Output<Tensor>("Out");
// auto* out_ptr = out->mutable_data<T>(ctx.GetPlace());
// out_ptr[0] = 0;  // input contect is overwrited.

D
dzhwinter 已提交
42 43 44
// NOTE(dzhwinter):
// Only for backward compacity and stable. if enable_inplace_whitelist is turn
// on.
D
dzhwinter 已提交
45 46 47
// only the ops in whitelist will be use inplace strategy.
// if not, all the op will be inplaced if it registered with InplaceClass
DEFINE_bool(
D
dzhwinter 已提交
48
    enable_inplace_whitelist, false,
D
dzhwinter 已提交
49 50 51 52 53
    "If this option turns on, only these op in whitelist can be inplaced."
    "If it turns off, all of the running op can be candidate of inplaced op."
    "Such as scale, elementwise_add"
    "By default, it's turned on");

D
dzhwinter 已提交
54 55
DECLARE_string(memory_optimize_debug);

D
dzhwinter 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
// clang-format off
const std::string kInplacedOpWhiteList[] = { // NOLINT
    "sigmoid",
    "exp",
    "relu",
    "tanh",
    "sqrt",
    "ceil",
    "floor",
    "reciprocal",
    "relu6",
    "soft_relu",
    "hard_sigmoid",
    "batch_norm",
    "batch_norm_grad",
    "sum",
    "sum_grad",
    "scale",
    "reshape",
    "elementwise_add",
    "elementwise_add_grad",
};
// clang-format on

namespace paddle {
namespace framework {
namespace details {

84
static inline ir::Node* GetNextCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
85 86 87 88
  // if next op is inplaced, then return the output var
  // otherwise return nullptr
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
  ir::Node* inplaced_var = nullptr;
89 90 91 92 93
  for (auto* next_op : var->outputs) {
    for (auto* output : next_op->outputs) {
      if (output->IsVar() && !output->IsCtrlVar() &&
          output->Name() == var->Name()) {
        inplaced_var = output;
D
dzhwinter 已提交
94 95 96 97 98 99
      }
    }
  }
  return inplaced_var;
}

100
static inline ir::Node* GetPrevCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
101
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
D
dzhwinter 已提交
102
  if (var->inputs.empty()) return nullptr;
103 104 105 106 107 108 109 110 111 112 113
  auto* prev_op = var->inputs.at(0);
  auto input_it = std::find_if(prev_op->inputs.begin(), prev_op->inputs.end(),
                               [&](ir::Node* node) {
                                 if (node->IsVar() && !node->IsCtrlVar() &&
                                     node->Name() == var->Name()) {
                                   return true;
                                 } else {
                                   return false;
                                 }
                               });
  return input_it == prev_op->inputs.end() ? nullptr : *input_it;
D
dzhwinter 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
}

InplacePass::InplacePass() : Pass() {
  if (FLAGS_enable_inplace_whitelist) {
    for (auto& s : kInplacedOpWhiteList) {
      whitelist_.emplace(s);
    }
  }
}

void InplacePass::InitSSAGraphNodes() const {
  std::unordered_map<std::string, std::unordered_set<ir::Node*>> all_vars;
  for (auto* op : view_.AllOps()) {
    for (auto* node : op->inputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
    for (auto* node : op->outputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
  }
}

std::unique_ptr<ir::Graph> InplacePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  var_nodes_.clear();
  view_.Build(graph.get());
  InitSSAGraphNodes();

  for (auto* op : view_.AllOps()) {
    if (FLAGS_enable_inplace_whitelist && !whitelist_.count(op->Name()))
      continue;
    TryInplaceOpInputOutput(op, graph.get());
  }
  graph->ResolveHazard(var_nodes_);
156

D
dzhwinter 已提交
157 158 159 160 161 162 163
  return graph;
}

void InplacePass::InplaceModifyDesc(const std::string& var,
                                    const std::string& cache_var,
                                    const size_t& idx) const {
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
164
    ir::Node* op = view_.AllOps()[i];
D
dzhwinter 已提交
165 166 167 168 169 170 171 172 173
    PADDLE_ENFORCE(op->IsOp() && op->Op());
    auto* op_desc = op->Op();
    op_desc->RenameInput(var, cache_var);
    op_desc->RenameOutput(var, cache_var);
    if (op_desc->Block()->HasVar(var)) op_desc->Block()->RemoveVar(var);
    op_desc->Flush();
  }
}

D
dzhwinter 已提交
174 175 176 177
const SSANodePair InplacePass::TryInplaceModifyVar(const std::string& var,
                                                   const std::string& cache_var,
                                                   const size_t& idx,
                                                   ir::Graph* graph) const {
D
dzhwinter 已提交
178 179 180 181 182
  PADDLE_ENFORCE(var_nodes_[var].size() >= 1 &&
                 var_nodes_[var].at(0)->Var() != nullptr);
  std::unique_ptr<VarDesc> var_desc(new VarDesc(*var_nodes_[var].at(0)->Var()));
  var_desc->SetName(cache_var);

D
dzhwinter 已提交
183 184
  SSANodePair swap_nodes;

D
dzhwinter 已提交
185 186 187 188 189 190 191
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
    auto* op = view_.AllOps()[i];

    // redirect the input to the latest version of cache_var
    for (auto* node : op->inputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
D
dzhwinter 已提交
192

D
dzhwinter 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205
        // swap node to cache_node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        PADDLE_ENFORCE(node->inputs.size() == 1 && node->inputs[0]->IsOp());
        auto* prev_op = node->inputs[0];
        std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), node,
                     cache_node);
        cache_node->inputs.emplace_back(prev_op);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }

D
dzhwinter 已提交
206
        swap_nodes.emplace_back(std::make_pair(node, cache_node));
D
dzhwinter 已提交
207 208
      }
    }
D
dzhwinter 已提交
209 210 211

    // if we need to rename the output,
    // always create a newer version of cache_var
D
dzhwinter 已提交
212 213 214 215 216 217 218 219 220 221 222 223
    for (auto* node : op->outputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        // swap node to cache node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        cache_node->inputs.emplace_back(op);
        std::replace(op->outputs.begin(), op->outputs.end(), node, cache_node);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
D
dzhwinter 已提交
224 225

        swap_nodes.emplace_back(std::make_pair(node, cache_node));
D
dzhwinter 已提交
226 227 228
      }
    }
  }
D
dzhwinter 已提交
229

D
dzhwinter 已提交
230 231 232
  return swap_nodes;
}

D
dzhwinter 已提交
233
void InplacePass::CommitModify(const SSANodePair& swap_nodes,
D
dzhwinter 已提交
234 235
                               ir::Graph* graph) const {
  for (auto& pair : swap_nodes) {
D
dzhwinter 已提交
236 237 238 239
    auto *node = pair.first, *cache_node = pair.second;
    const std::string var = node->Name(), cache_var = cache_node->Name();
    var_nodes_[cache_var].emplace_back(cache_node);
    graph->RemoveNode(node);
D
dzhwinter 已提交
240
    auto& nodes = var_nodes_.at(var);
D
dzhwinter 已提交
241 242 243
    // release unused var in graph. Because python side memory optimize
    // may reused the var in same name, so we only clear the var node
    // after current inplaced index.
D
dzhwinter 已提交
244 245 246 247
    nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
  }
}

D
dzhwinter 已提交
248
void InplacePass::WithdrawModify(const SSANodePair& nodes,
D
dzhwinter 已提交
249 250
                                 ir::Graph* graph) const {
  for (auto& pair : nodes) {
D
dzhwinter 已提交
251 252 253 254 255 256 257
    auto *node = pair.first, *cache_node = pair.second;
    const std::string var = node->Name(), cache_var = cache_node->Name();
    auto* prev_op = node->inputs[0];
    std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), cache_node,
                 node);
    for (auto* next_op : node->outputs) {
      std::replace(next_op->inputs.begin(), next_op->inputs.end(), cache_node,
D
dzhwinter 已提交
258
                   node);
D
dzhwinter 已提交
259
    }
D
dzhwinter 已提交
260
    graph->RemoveNode(cache_node);
D
dzhwinter 已提交
261 262 263 264 265
  }
}

void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
                                          ir::Graph* graph) const {
D
dzhwinter 已提交
266
  VLOG(4) << "Try to inplace op " << op->Name();
D
dzhwinter 已提交
267 268
  PADDLE_ENFORCE(op->Op() != nullptr && op->Op()->Block() != nullptr,
                 "op_desc is nullptr");
D
dzhwinter 已提交
269 270
  // some pre-requirments need to meet if the op want to inplaced.

D
dzhwinter 已提交
271 272 273
  auto* op_desc = op->Op();
  auto& infer_inplace =
      OpInfoMap::Instance().Get(op_desc->Type()).infer_inplace_;
D
dzhwinter 已提交
274 275

  // 1. infer_inplace_ is registered.
D
dzhwinter 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  if (!static_cast<bool>(infer_inplace)) return;
  PADDLE_ENFORCE(static_cast<bool>(infer_inplace),
                 "%s's infer_inplace has not been registered", op_desc->Type());

  auto* block = op_desc->Block();
  auto in_to_outs = infer_inplace(*op_desc, block);

  auto& all_ops = view_.AllOps();
  auto cursor = std::find(all_ops.begin(), all_ops.end(), op);
  size_t idx = std::distance(all_ops.begin(), cursor);

  for (auto& pair : in_to_outs) {
    auto& in_var_name = pair.first;
    auto& out_var_name = pair.second;
    auto* in_node = view_.GetNodeByName(in_var_name, op->inputs);
    auto* out_node = view_.GetNodeByName(out_var_name, op->outputs);
D
dzhwinter 已提交
292

D
dzhwinter 已提交
293 294
    // 2. there is no external pending op on the input node
    if (view_.PendingOpsOnVar(in_node).size() > 1) {
D
dzhwinter 已提交
295 296 297 298
      VLOG(4) << string::Sprintf(
          "Skiped pair %s => %s. %s input has external dependency."
          "inplace such pair will overwrite the memory.",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
299 300
      continue;
    }
D
dzhwinter 已提交
301

302
    // 3. if output has been memory optimize by python(fluid.memory_optmize()).
D
dzhwinter 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    // this candidate  can not be inplaced. Will be deprecated in the future.
    if (view_.ReusedInPythonMemOpt(out_node->Name())) {
      VLOG(4) << string::Sprintf(
          "Skiped %s => %s reused previous memory block in python memory "
          "optmize,"
          "it inplace may generate a circle",
          out_var_name, in_var_name, op->Name());
      continue;
    }

    // Debug Interface. Which would be skipped by the pass.
    if (out_node->Name() == FLAGS_memory_optimize_debug) {
      VLOG(3) << "Skiped var by force. FLAGS_memory_optimize_debug="
              << out_node->Name();
      continue;
    }

D
dzhwinter 已提交
320 321 322 323
    // NOTE(dzhwinter):
    // two stage commit of inplaced process. if after inplace happens generate a
    // circle,
    // then withdraw the changes. Otherwise, safely add the node.
D
dzhwinter 已提交
324 325 326 327 328 329 330
    auto swap_nodes =
        TryInplaceModifyVar(out_var_name, in_var_name, idx, graph);

    if (!ir::HasCircle(*graph)) {
      VLOG(3) << string::Sprintf("!!! %s,  %s => %s inplaced", op->Name(),
                                 out_var_name, in_var_name);
      InplaceModifyDesc(out_var_name, in_var_name, idx);
D
dzhwinter 已提交
331
      CommitModify(swap_nodes, graph);
D
dzhwinter 已提交
332 333 334 335
    } else {
      VLOG(3) << string::Sprintf(
          "Skiped pair %s => %s, inplace will generate a circle. withdraw %s",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
336
      WithdrawModify(swap_nodes, graph);
D
dzhwinter 已提交
337
    }
D
dzhwinter 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  }
}

ir::Node* GraphView::GetNodeByName(const std::string& name,
                                   const std::vector<ir::Node*>& nodes) const {
  // nodes should be op->inputs/outputs
  // node in same node do have different name.
  std::unordered_set<std::string> nodes_in_op;
  bool has_dup_node =
      std::all_of(nodes.begin(), nodes.end(), [&nodes_in_op](ir::Node* node) {
        if (!node->IsVar() || node->IsCtrlVar() || node->Var() == nullptr) {
          if (nodes_in_op.count(node->Name())) return true;
          nodes_in_op.emplace(node->Name());
        }
        return false;
      });
  PADDLE_ENFORCE(has_dup_node == false, "nodes has same name!");
  ir::Node* node = nullptr;
  for (auto* it : nodes) {
    if (!it->IsVar() || it->IsCtrlVar() || it->Var() == nullptr) continue;
    if (it->Name() == name) {
      node = it;
      break;
    }
  }
  PADDLE_ENFORCE(node != nullptr,
                 string::Sprintf("Not found var %s in nodes!", name));
  return node;
}

std::vector<ir::Node*> GraphView::PendingOpsOnVar(ir::Node* node) {
369 370 371 372 373 374 375 376 377 378
  // get the pending ops depends on same var node.
  // because node also maybe a inplaced variable, so need to backtrack all the
  // previous inplaced vars.
  std::vector<ir::Node*> pending_ops;
  ir::Node* p = node;
  while (p != nullptr) {
    pending_ops.insert(pending_ops.end(), p->outputs.begin(), p->outputs.end());
    p = GetPrevCascadeInplacedVar(p);
  }
  return pending_ops;
D
dzhwinter 已提交
379 380
}

D
dzhwinter 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
void GraphView::Build(ir::Graph* g) {
  // track the var nodes in correct order.
  // Because we insert some new created node. Which may have data race between
  // nodes.
  // resolve data harzards depends on the var nodes in right order.
  ops_ = SortOpLikeDescOrder(*g);

  // track the nodes which reused previous node in Python memory optimize.
  // these node can not be inplaced, otherwise may generate a circle in graph.
  std::unordered_set<std::string> all_vars;
  for (auto& node : g->Nodes()) {
    if (node->IsVar()) continue;
    for (auto& out : node->outputs) {
      if (out->IsCtrlVar() || out->Var() == nullptr) continue;
      if (all_vars.count(out->Name())) {
        dup_nodes_.emplace(out->Name());
      } else {
        all_vars.emplace(out->Name());
      }
    }
  }
}
D
dzhwinter 已提交
403

D
dzhwinter 已提交
404
const& std::vector<ir::Node*> GraphView::AllOps() { return ops_; }
D
dzhwinter 已提交
405

D
dzhwinter 已提交
406 407 408 409
bool GraphView::ReusedInPythonMemOpt(const std::string& var) const {
  return dup_nodes_.count(var);
}

D
dzhwinter 已提交
410 411 412 413 414
}  // namespace details
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(inplace_pass, paddle::framework::details::InplacePass);