test_cast_op.py 3.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
Y
Yu Yang 已提交
18 19
import unittest
import numpy as np
20 21

import paddle
22
import paddle.fluid.core as core
23 24
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
Yu Yang 已提交
25 26


K
Kexin Zhao 已提交
27
class TestCastOp1(op_test.OpTest):
Y
Yu Yang 已提交
28 29 30 31 32
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
33 34
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP64)
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42 43 44
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


K
Kexin Zhao 已提交
45 46 47
class TestCastOp2(op_test.OpTest):
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
48
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
49 50 51 52 53 54 55 56
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'

    def test_check_output(self):
K
Kexin Zhao 已提交
57
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
58 59


K
Kexin Zhao 已提交
60
class TestCastOp3(op_test.OpTest):
K
Kexin Zhao 已提交
61 62 63 64 65 66 67 68 69 70 71
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP16)
        }
        self.op_type = 'cast'

    def test_check_output(self):
K
Kexin Zhao 已提交
72
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
73 74


75
class TestCastOpError(unittest.TestCase):
76 77 78 79 80 81 82
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')
            # The input dtype of cast_op must be bool, float16, float32, float64, int32, int64, uint8.
83
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='int16')
84
            self.assertRaises(TypeError, fluid.layers.cast, x2, 'int32')
85 86 87 88 89 90

            def test_dtype_type():
                x4 = fluid.layers.data(name='x4', shape=[4], dtype='int32')
                output = fluid.layers.cast(x=x4, dtype='int16')

            self.assertRaises(TypeError, test_dtype_type)
91 92


Y
Yu Yang 已提交
93
if __name__ == '__main__':
94
    paddle.enable_static()
Y
Yu Yang 已提交
95
    unittest.main()