pool_op.cc 24.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16

17
#include <unordered_map>
18 19 20 21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24 25 26 27

namespace paddle {
namespace operators {

28 29
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
30 31
  int output_size;
  if (!ceil_mode) {
32 33
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
34 35
  } else {
    output_size =
36 37 38
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
39
  }
40 41
  PADDLE_ENFORCE_GT(
      output_size, 0,
42 43 44 45 46 47
      platform::errors::InvalidArgument(
          "the output size must be greater than 0. But received: "
          "output_size = %d due to the settings of input_size(%d), "
          "padding(%d,%d), "
          "k_size(%d) and stride(%d). Please check again!",
          output_size, input_size, padding_1, padding_2, filter_size, stride));
48 49 50
  return output_size;
}

C
chengduo 已提交
51
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
52 53 54 55 56 57
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("X"), true,
      platform::errors::NotFound("Input(X) of Pool operator is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Out"), true,
      platform::errors::NotFound("Output(Out) of Pool operator is not found."));
58

C
chengduoZH 已提交
59
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
60 61 62
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
63
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
64
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
65 66 67 68
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
69

70
  auto in_x_dims = ctx->GetInputDim("X");
71 72
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
73 74 75 76
      platform::errors::InvalidArgument(
          "the input of Op(pool) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor and it's shape is [%s].",
          in_x_dims.size(), in_x_dims));
77 78 79

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      platform::errors::InvalidArgument(
          "the dimension of input minus the size of "
          "Attr(ksize) must be euqal to 2 in Op(pool). "
          "But received: the dimension of input minus the size "
          "of Attr(ksize) is %d, the "
          "input's dimension is %d, the shape of input "
          "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
          in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
          ksize.size(), framework::make_ddim(ksize)));

  PADDLE_ENFORCE_EQ(
      ksize.size(), strides.size(),
      platform::errors::InvalidArgument(
          "the size of Attr(ksize) and Attr(strides) in "
          "Op(pool) must be equal. "
          "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
          "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
          ksize.size(), strides.size(), framework::make_ddim(ksize),
          framework::make_ddim(strides)));
99

100 101 102 103
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
120 121 122
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
123
    for (int i = 0; i < data_dims.size(); ++i) {
124
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
125
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
126
      } else {
127 128 129
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
130
      }
131
    }
132
  }
133 134 135 136 137 138 139 140 141 142

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

143
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
144
  ctx->ShareLoD("X", "Out");
145 146
}

147
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
148
    const framework::ExecutionContext& ctx) const {
149
  framework::LibraryType library_{framework::LibraryType::kPlain};
150
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
151 152
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
153
#ifdef PADDLE_WITH_CUDA
154 155
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
156 157
  }
#endif
158 159 160 161
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
162
    layout_ = framework::DataLayout::kMKLDNN;
163
  }
164
#endif
165

166 167 168
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
      layout_, library_);
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
193
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
194 195 196
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::NotFound(
                        "Input(X) of Pool Gradoperator is not found."));
197
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
198 199
                    platform::errors::NotFound(
                        "Input(X@GRAD) of Pool Gradoperator is not found."));
200 201 202
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

203
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
204
    const framework::ExecutionContext& ctx) const {
205
  framework::LibraryType library_{framework::LibraryType::kPlain};
206
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
207 208
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
209
#ifdef PADDLE_WITH_CUDA
210 211
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
212 213
  }
#endif
214 215 216 217
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
218
    layout_ = framework::DataLayout::kMKLDNN;
219
  }
220
#endif
221

222
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
223

K
Kexin Zhao 已提交
224 225
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
226 227
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
246
void Pool2dOpMaker::Make() {
247 248
  AddInput(
      "X",
C
chengduoZH 已提交
249
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
250 251 252
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
253
  AddOutput("Out",
K
kexinzhao 已提交
254 255 256 257
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
258
            "and W is the width of the feature.");
259

C
chengduoZH 已提交
260
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
261 262
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
263
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
264
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
265 266
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
267
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
268 269
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
270
  // TypedAttrChecker don't support vector type.)
271 272
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
273 274 275
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
276
      .SetDefault(false);
K
kexinzhao 已提交
277 278 279
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
280 281
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
282 283 284
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
285 286
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
287
      "If global_pooling = true, paddings and kernel size will be ignored.")
288
      .SetDefault({0, 0});
289 290
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
291
      "(bool) When true, will exclude the zero-padding in the "
292
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
293 294
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
295
      .SetDefault(true);
296 297
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
298
      "(bool) When true, will perform adaptive pooling instead, "
299 300
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
301 302
      "pooling in each grid area to get output pooling value. "
      "Default False.")
303 304
      .SetDefault(false);

305 306
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
307
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
308
      .SetDefault(false);
309 310
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
311
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
312
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
313
      "the floor function will be used. Default False")
314
      .SetDefault(false);
315
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
316
                "(bool) Only used in mkldnn kernel. Default False")
317
      .SetDefault(false);
318 319 320 321
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
322
      .SetDefault(false);
323 324 325 326 327
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
328 329 330 331 332 333
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
334
      .SetDefault("NCHW");
335 336 337 338 339
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

340 341 342 343 344 345
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
346
  // TODO(dzhwinter): need to registered layout transform function
347 348

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
349 350 351
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
352
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
353
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
354
These two elements represent height and width, respectively.
C
chengduoZH 已提交
355 356
The input(X) size and output(Out) size may be different.

357
Example:
F
fengjiayi 已提交
358

C
chengduoZH 已提交
359
  Input:
F
fengjiayi 已提交
360

K
kexinzhao 已提交
361
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
362

C
chengduoZH 已提交
363
  Output:
F
fengjiayi 已提交
364

K
kexinzhao 已提交
365
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

383 384
  For ceil_mode = false:
       $$
385
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
386 387
       $$
       $$
388
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
389
       $$
390

391 392
  For ceil_mode = true:
       $$
393
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
394 395
       $$
       $$
396
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
397
       $$
K
kexinzhao 已提交
398

399
  For exclusive = false:
400
       $$
401
       hstart = i * strides[0] - pad_height_top
402 403 404 405 406
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
407
       wstart = j * strides[1] - pad_width_left
408 409 410 411 412 413 414
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
415

416
  For exclusive = true:
417
       $$
418
       hstart = max(0, i * strides[0] - pad_height_top)
419 420 421 422 423
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
424
       wstart = max(0, j * strides[1] - pad_width_left)
425 426 427 428 429 430 431
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
432

433
)DOC");
434 435
}

C
chengduo 已提交
436 437
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
438
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
439
      const override {
440 441
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
442 443 444
  }
};

Y
Yu Yang 已提交
445
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
446 447
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
448 449
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
450 451 452
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
453
  AddOutput("Out",
C
chengduoZH 已提交
454
            "(Tensor) The output tensor of pooling operator."
455
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
456 457
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
458
            "width of the feature, respectively.");
459

C
chengduoZH 已提交
460
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
461
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
462
                       "and \"avg\" for average-pooling.")
463
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
464 465 466 467
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
468
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
469 470
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
471
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
472 473
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
474 475 476
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
477
      .SetDefault(false);
K
kexinzhao 已提交
478 479 480 481
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
482 483
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
484 485
  AddAttr<std::vector<int>>(
      "paddings",
486 487 488 489
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
490
      "If global_pooling = true, ksize and paddings will be ignored.")
491 492
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
493 494
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
495
      "(bool) When true, will exclude the zero-padding in the "
496
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
497 498
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
499
      .SetDefault(true);
500 501
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
502
      "(bool) When true, will perform adaptive pooling instead, "
503 504
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
505 506
      "pooling in each grid area to get output pooling value. "
      "Default False")
507
      .SetDefault(false);
508

509 510
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
511
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
512
      .SetDefault(false);
513 514
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
515
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
516
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
517
      "the floor function will be used. Default False")
518
      .SetDefault(false);
519
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
520
                "(bool) Only used in mkldnn kernel. Default False")
521
      .SetDefault(false);
522 523
  AddAttr<std::string>(
      "data_format",
524 525 526
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
527
      "the input will be transformed automatically. ")
528 529 530 531 532 533 534
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
535 536
  // TODO(dzhwinter): need to registered layout transform function

537
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
538 539
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
540
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
541
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
542 543
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
544
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
545 546 547

Example:
  Input:
K
kexinzhao 已提交
548
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
549
  Output:
K
kexinzhao 已提交
550
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

574
  For ceil_mode = false:
575
       $$
576
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
577 578
       $$
       $$
579
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
580 581
       $$
       $$
582
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
583
       $$
584
  For ceil_mode = true:
585
       $$
586
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
587 588
       $$
       $$
589
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
590 591
       $$
       $$
592
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
593
       $$
D
dengkaipeng 已提交
594

595
  For exclusive = false:
596
       $$
597
       dstart = i * strides[0] - pad_depth_front
598 599 600 601 602
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
603
       hstart = j * strides[1] - pad_height_top
604 605 606 607 608
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
609
       wstart = k * strides[2] -  pad_width_left
610 611 612 613 614 615 616
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
617

618
  For exclusive = true:
619
       $$
620
       dstart = max(0, i * strides[0] - pad_depth_front)
621 622 623 624 625
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
626 627 628
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
629 630 631
       hend = min(H, hstart + ksize[1])
       $$
       $$
632
       wstart = max(0, k * strides[2] - pad_width_left)
633 634 635 636 637 638 639
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
640

641
)DOC");
642
}
643 644 645 646 647
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
648 649 650 651
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
652
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
653

Q
QI JUN 已提交
654 655 656 657 658
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
659
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
660

H
hong 已提交
661 662 663 664
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
665
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
666

Q
QI JUN 已提交
667 668 669 670 671 672
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);