recurrent_op_test.cc 12.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

Y
Yan Chunwei 已提交
14 15
#include "paddle/operators/recurrent_op.h"

Y
Yan Chunwei 已提交
16 17 18
#include <glog/logging.h>
#include <gtest/gtest.h>

Y
Yi Wang 已提交
19
#include "paddle/framework/ddim.h"
Y
Yan Chunwei 已提交
20 21 22
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
24 25 26 27

namespace paddle {
namespace operators {

Y
Yi Wang 已提交
28 29
using framework::make_ddim;
using framework::DDim;
D
dongzhihong 已提交
30 31 32 33
using framework::Tensor;
using framework::Variable;
using framework::Scope;
using framework::OpRegistry;
Y
Yi Wang 已提交
34

Y
Yan Chunwei 已提交
35
class RecurrentOpTest : public ::testing::Test {
36
 protected:
Y
Yan Chunwei 已提交
37 38 39 40 41 42 43 44 45 46 47 48
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepNet();
    CreateRNNOp();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    // create input, and init content
    LOG(INFO) << "create global variable x";
    for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
Y
Yu Yang 已提交
49
      Variable* x = scope_.NewVar(inlink);
Y
Yan Chunwei 已提交
50 51 52 53 54 55
      DDim dims = make_ddim(std::vector<int>{
          10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }
    // create output alias just for test
    for (auto inlink : std::vector<std::string>{"h@alias"}) {
Y
Yu Yang 已提交
56
      Variable* x = scope_.NewVar(inlink);
Y
Yan Chunwei 已提交
57 58 59 60 61 62
      DDim dims =
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }

    LOG(INFO) << "create global variable w";
Y
Yu Yang 已提交
63
    Variable* w = scope_.NewVar("rnn/w");
Y
Yan Chunwei 已提交
64 65 66
    w->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());

67
    for (auto boot : std::vector<std::string>{"h_boot"}) {
Y
Yan Chunwei 已提交
68
      LOG(INFO) << "create global variable " << boot;
Y
Yu Yang 已提交
69
      Variable* h_boot = scope_.NewVar(boot);
Y
Yan Chunwei 已提交
70 71 72 73 74 75
      h_boot->GetMutable<Tensor>()->mutable_data<float>(
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
          platform::CPUPlace());
    }

    LOG(INFO) << "create variable step_scopes";
Y
Yu Yang 已提交
76
    scope_.NewVar("step_scopes");
Y
Yan Chunwei 已提交
77 78

    LOG(INFO) << "create variable h";
Y
Yu Yang 已提交
79
    scope_.NewVar("h");
Y
Yan Chunwei 已提交
80 81 82
  }

  void CreateRNNOp() {
Y
Yi Wang 已提交
83
    framework::OpDesc op_desc;
Y
Yan Chunwei 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    op_desc.set_type("recurrent_op");
    // inlinks 0
    op_desc.add_inputs("x");
    op_desc.add_inputs("x0");
    op_desc.add_inputs("x1");
    // boot_memories 3
    op_desc.add_inputs("h_boot");
    // step net 5
    op_desc.add_inputs("step_net");
    // outlinks 6
    op_desc.add_outputs("h");
    // step scopes 7
    op_desc.add_outputs("step_scopes");

    auto _input_format = std::vector<int>{
        0,  // in_link
        3,  // memories
102
        4   // step_net
Y
Yan Chunwei 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    };
    auto input_format = op_desc.add_attrs();
    input_format->set_name("input_format");
    input_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : _input_format) {
      input_format->add_ints(i);
    }

    auto output_format = op_desc.add_attrs();
    output_format->set_name("output_format");
    output_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : std::vector<int>{0, 1, 2}) {
      output_format->add_ints(i);
    }

    auto inlink_alias = op_desc.add_attrs();
    inlink_alias->set_name("inlink_alias");
    inlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto outlink_alias = op_desc.add_attrs();
    outlink_alias->set_name("outlink_alias");
    outlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto pre_memories = op_desc.add_attrs();
    pre_memories->set_name("pre_memories");
    pre_memories->set_type(paddle::framework::AttrType::STRINGS);

    auto memories = op_desc.add_attrs();
    memories->set_name("memories");
    memories->set_type(paddle::framework::AttrType::STRINGS);

    // create inlink_alias
    for (const auto& item :
         std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
      inlink_alias->add_strings(item);
    }
    // pre memories
140
    for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
Y
Yan Chunwei 已提交
141 142 143
      pre_memories->add_strings(item);
    }
    // memories
144
    for (const auto& item : std::vector<std::string>{"rnn/h"}) {
Y
Yan Chunwei 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
      memories->add_strings(item);
    }
    // output alias
    for (const auto& item : std::vector<std::string>{"h@alias"}) {
      outlink_alias->add_strings(item);
    }

    rnn_op_ = OpRegistry::CreateOp(op_desc);

    LOG(INFO) << "rnn_op finish init";
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
159
    Variable* var = scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
160 161 162 163 164
    auto net = var->GetMutable<NetOp>();
    net->AddOp(
        OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));

    net->AddOp(
165
        OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
Y
Yan Chunwei 已提交
166 167 168 169
    net->CompleteAddOp();
  }

  // father scope
Y
Yu Yang 已提交
170
  Scope scope_;
D
dongzhihong 已提交
171
  std::shared_ptr<framework::OperatorBase> rnn_op_;
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179 180
};

TEST_F(RecurrentOpTest, Run) {
  platform::CPUDeviceContext ctx;
  rnn_op_->InferShape(scope_);
  rnn_op_->Run(scope_, ctx);
}

class RecurrentGradientAlgorithmTest : public ::testing::Test {
181
 protected:
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepScopes();
    CreateStepNet();
    CreateRNNGradientAlgorithm();

    // segment inputs
    SegmentInputs();
    // link forward memories
    LinkeMemories();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    // inputs: x
    LOG(INFO) << "create global variable x";
Y
Yu Yang 已提交
199
    Variable* x = scope_.NewVar("x");
Y
Yan Chunwei 已提交
200 201 202 203 204
    DDim dims =
        make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
    x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    // inputs: h_boot
    LOG(INFO) << "create global variable h_boot";
Y
Yu Yang 已提交
205
    Variable* h_boot = scope_.NewVar("h_boot");
Y
Yan Chunwei 已提交
206 207 208 209
    h_boot->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
    // inputs: w
    LOG(INFO) << "create global variable w";
Y
Yu Yang 已提交
210
    Variable* w = scope_.NewVar("rnn/w");
Y
Yan Chunwei 已提交
211 212 213 214
    w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
                                                 platform::CPUPlace());
    // inputs: h_grad
    LOG(INFO) << "create variable h_grad";
Y
Yu Yang 已提交
215
    Variable* dh = scope_.NewVar("h_grad");
Y
Yan Chunwei 已提交
216 217 218 219
    dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
                                                  platform::CPUPlace());
    // inputs: step_scopes
    LOG(INFO) << "create variable step_scopes";
Y
Yu Yang 已提交
220
    scope_.NewVar("step_scopes");
Y
Yan Chunwei 已提交
221 222
    // inputs: step_net
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
223
    scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
224 225
    // outputs: w_grad
    LOG(INFO) << "create global variable w_grad";
Y
Yu Yang 已提交
226
    scope_.NewVar("rnn/w_grad");
Y
Yan Chunwei 已提交
227 228
    // outputs: x_grad
    LOG(INFO) << "create global variable x_grad";
Y
Yu Yang 已提交
229
    scope_.NewVar("x_grad");
Y
Yan Chunwei 已提交
230 231
    // outputs: h_boot_grad
    LOG(INFO) << "create global variable h_boot_grad";
Y
Yu Yang 已提交
232
    scope_.NewVar("h_boot_grad");
Y
Yan Chunwei 已提交
233 234 235
  }

  void CreateStepScopes() {
Y
Yu Yang 已提交
236 237
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
238
    for (int i = 0; i < 10; ++i) {
Y
Yu Yang 已提交
239 240 241 242 243
      auto& scope = scope_.NewScope();
      auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
      pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
      auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
      tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
244 245

      // for unit test of ConcatOutputs
Y
Yu Yang 已提交
246 247
      auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
      xg->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
248

Y
Yu Yang 已提交
249
      step_scopes->emplace_back(&scope);
Y
Yan Chunwei 已提交
250 251 252
    }

    // last time step
253
    auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
Y
Yu Yang 已提交
254
    g->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  }

  void CreateRNNGradientAlgorithm() {
    std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
    arg->step_net = "step_net";
    arg->step_scopes = "step_scopes";
    rnn::Link inlink;
    inlink.external = "h_grad";
    inlink.internal = "rnn/h_grad";
    arg->inlinks = std::vector<rnn::Link>{inlink};

    rnn::Link outlink;
    outlink.external = "x_grad";
    outlink.internal = "rnn/x_grad";
    arg->outlinks = std::vector<rnn::Link>{outlink};

    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre_grad";
    mem_attr.var = "rnn/h_grad";
    mem_attr.boot_var = "h_boot_grad";
    arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};

    rnn_grad_algo_.Init(std::move(arg));
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
282
    Variable* var = scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
283
    auto net = var->GetMutable<NetOp>();
284 285
    net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w", "rnn/s_grad"},
                                    {"rnn/h_pre_grad", "rnn/w_grad"}, {}));
Y
Yan Chunwei 已提交
286

287 288
    net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"},
                                    {"rnn/x_grad", "rnn/s_grad"}, {}));
Y
Yan Chunwei 已提交
289 290 291 292 293 294 295 296 297 298 299
    net->CompleteAddOp();
  }

  void SegmentInputs() {
    LOG(INFO) << "segment inputs";
    std::vector<std::string> inlinks = {"x"};
    std::vector<std::string> inlinks_alias = {"rnn/x"};

    rnn::Link inlink;
    inlink.external = "x";
    inlink.internal = "rnn/x";
Y
Yu Yang 已提交
300 301
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
302
    rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10,
D
dangqingqing 已提交
303
                       true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
304 305 306 307 308 309 310 311 312 313
  }

  void LinkeMemories() {
    LOG(INFO) << "link memories";
    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre";
    mem_attr.var = "rnn/h";
    mem_attr.boot_var = "boot_h";
    std::vector<rnn::MemoryAttr> memories;
    memories.push_back(mem_attr);
Y
Yu Yang 已提交
314 315
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
316
    for (int i = 1; i < 10; ++i) {
317 318
      rnn::LinkMemories(*step_scopes, memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
319 320 321
    }
  }

Y
Yu Yang 已提交
322
  Scope scope_;
Y
Yan Chunwei 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
  RecurrentGradientAlgorithm rnn_grad_algo_;
};

// TEST_F(RecurrentGradientAlgorithmTest, Run) {
//   platform::CPUDeviceContext ctx;
//   rnn_grad_algo_.Run(scope_, ctx);
// }

}  // namespace operators
}  // namespace paddle

TEST(RecurrentOp, LinkMemories) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  using namespace paddle::operators;

  // create and init step scopes
D
dangqingqing 已提交
340
  size_t len = 10;
Y
Yu Yang 已提交
341
  std::vector<Scope*> step_scopes;
D
dangqingqing 已提交
342
  for (size_t i = 0; i < len; ++i) {
Y
Yu Yang 已提交
343
    auto scope = new Scope();
344 345
    scope->NewVar("pre_h");
    auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
Y
Yu Yang 已提交
346
    float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
D
dangqingqing 已提交
347
    for (size_t j = 0; j < 15 * 20; ++j) {
D
dangqingqing 已提交
348
      data[j] = rand() * (1. / (double)RAND_MAX);
Y
Yan Chunwei 已提交
349 350 351 352 353 354 355 356 357 358 359 360
    }
    step_scopes.push_back(scope);
  }

  // create MemoryAttr
  rnn::MemoryAttr mem_attr;
  mem_attr.pre_var = "pre_h";
  mem_attr.var = "h";
  mem_attr.boot_var = "boot_h";
  std::vector<rnn::MemoryAttr> memories;
  memories.push_back(mem_attr);

D
dangqingqing 已提交
361
  for (size_t i = 1; i < len; ++i) {
D
dangqingqing 已提交
362
    rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
363 364
  }
  // check
D
dangqingqing 已提交
365
  for (size_t i = 0; i < len - 1; ++i) {
Y
Yan Chunwei 已提交
366
    const float* a =
367
        step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
Y
Yan Chunwei 已提交
368
    const float* b = step_scopes[i + 1]
369
                         ->FindVar("pre_h")
Y
Yan Chunwei 已提交
370 371
                         ->GetMutable<Tensor>()
                         ->data<float>();
372 373
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
374 375 376 377
    }
  }

  for (int i = len - 2; i >= 0; --i) {
D
dangqingqing 已提交
378
    rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
379 380 381
  }
  // check
  for (int i = len - 2; i >= 0; --i) {
382 383 384 385
    const float* a =
        step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
    const float* b =
        step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
386 387
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
388 389
    }
  }
Y
Yu Yang 已提交
390 391 392 393

  for (auto s : step_scopes) {
    delete s;
  }
Y
Yan Chunwei 已提交
394 395 396 397
}

USE_OP(add_two);
USE_OP(mul);
398
USE_OP_WITHOUT_KERNEL(recurrent_op);