batch_norm_op.cc 24.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
S
Siddharth Goyal 已提交
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/data_layout.h"
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");

    // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
    PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                      "Mean and MeanOut should share the same memory");
    PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0],
                      ctx->Outputs("VarianceOut")[0],
                      "Variance and VarianceOut should share the same memory");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
49 50
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
51 52 53 54

    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "Input X must have 2 to 5 dimensions.");

Y
Yang Yu 已提交
55
    const int64_t C =
Q
QI JUN 已提交
56 57
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65 66 67 68

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C);

    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("MeanOut", {C});
    ctx->SetOutputDim("VarianceOut", {C});
    ctx->SetOutputDim("SavedMean", {C});
    ctx->SetOutputDim("SavedVariance", {C});
Y
Yang Yu 已提交
69
    ctx->ShareLoD("X", "Y");
Q
Qiao Longfei 已提交
70
  }
K
Kexin Zhao 已提交
71 72 73

 protected:
  framework::OpKernelType GetExpectedKernelType(
K
update  
Kexin Zhao 已提交
74
      const framework::ExecutionContext &ctx) const override {
K
Kexin Zhao 已提交
75 76
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("X")->type());
D
dzhwinter 已提交
77 78 79
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
K
Kexin Zhao 已提交
80
    auto bn_param_type = framework::proto::VarType::FP32;
D
dzhwinter 已提交
81 82 83
    if (input_data_type == framework::proto::VarType::FP64) {
      bn_param_type = framework::proto::VarType::FP64;
    }
K
Kexin Zhao 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Scale")->type()),
                      "Scale input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Bias")->type()),
                      "Bias input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Mean")->type()),
                      "Mean input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType(
                                         ctx.Input<Tensor>("Variance")->type()),
                      "Variance input should be of float type");
96

M
mozga-intel 已提交
97
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
98
    framework::LibraryType library = framework::LibraryType::kPlain;
M
mozga-intel 已提交
99
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
100
#ifdef PADDLE_WITH_MKLDNN
101
    if (library == framework::LibraryType::kPlain &&
102
        platform::CanMKLDNNBeUsed(ctx)) {
103
      library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
104
      layout = framework::DataLayout::kMKLDNN;
105 106
    }
#endif
107

108
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
109
                                   library);
K
Kexin Zhao 已提交
110
  }
Q
Qiao Longfei 已提交
111 112 113 114
};

class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
115
  void Make() override {
116 117 118 119
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
120
    AddAttr<float>("momentum", "").SetDefault(0.9);
C
chengduoZH 已提交
121 122 123 124 125 126
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
Q
QI JUN 已提交
127
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
Q
Qiao Longfei 已提交
128 129 130
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C "
131
             "that is applied to the output");
Q
Qiao Longfei 已提交
132 133
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
134
             "that is applied to the output");
Q
Qiao Longfei 已提交
135
    AddInput("Mean",
136
             "The global mean (for training) or "
Q
Qiao Longfei 已提交
137 138 139
             "estimated mean (for testing)");
    AddInput("Variance",
             "The global variance (for training) "
140
             "or estimated Variance (for testing)");
141
    AddOutput("Y", "result after normalization");
Q
Qiao Longfei 已提交
142 143
    AddOutput("MeanOut",
              "Share memory with Mean. "
144
              "Store the global mean when training");
Q
Qiao Longfei 已提交
145 146
    AddOutput("VarianceOut",
              "Share memory with Variance. "
147
              "Store the global Variance when training");
Q
Qiao Longfei 已提交
148 149
    AddOutput("SavedMean",
              "Mean of the current mini batch, "
Q
Qiao Longfei 已提交
150 151
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
152 153
    AddOutput("SavedVariance",
              "Variance of the current mini batch, "
Q
Qiao Longfei 已提交
154 155
              "will apply to output when training")
        .AsIntermediate();
156 157
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
158 159 160
        .SetDefault(false);
    AddAttr<bool>("fuse_with_relu",
                  "(bool, default false) Only used in mkldnn kernel")
161
        .SetDefault(false);
162 163 164 165 166 167 168 169
    AddAttr<bool>("use_global_stats",
                  "(bool, default false) Whether to use global mean and "
                  "variance. In inference or test mode, set use_global_stats "
                  "to true or is_test true. the behavior is equivalent. "
                  "In train mode, when setting use_global_stats True, the "
                  "global mean and variance are also used during train time, "
                  "the BN acts as scaling and shiffting.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
170
    AddComment(R"DOC(
171
Batch Normalization.
Q
Qiao Longfei 已提交
172

173 174 175 176 177 178
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
179 180 181 182 183

)DOC");
  }
};

C
chengduo 已提交
184 185 186 187 188 189 190 191 192
class BatchNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
  }
};

Q
Qiao Longfei 已提交
193
template <typename T>
Q
QI JUN 已提交
194 195
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
196 197 198 199 200
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
201 202 203 204
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
205 206 207
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
208 209 210

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
211 212
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
213 214
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
215 216
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

232
    if (!global_stats) {
Q
Qiao Longfei 已提交
233 234 235 236 237 238 239 240
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

241 242 243 244 245 246 247 248
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
249
        framework::TensorCopy(*x, ctx.GetPlace(), y);
250 251 252
        return;
      }

Q
QI JUN 已提交
253 254
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
255 256 257 258 259 260 261 262 263 264 265 266
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
267
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
281
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
282 283 284 285 286 287 288 289 290 291
      }

      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
292
    if (global_stats) {
Q
Qiao Longfei 已提交
293 294 295 296 297 298 299 300 301 302 303
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
304 305
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
319 320
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
321 322 323 324 325 326 327 328
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
329
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
330 331 332 333 334 335 336 337 338
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
339
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
340 341 342 343 344 345 346 347 348 349 350
    }
  }
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
351 352 353 354 355 356 357
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(scale) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("SavedMean"),
                   "Input(SavedMean) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("SavedVariance"),
                   "Input(SavedVariance) should not be null");
Q
Qiao Longfei 已提交
358 359 360

    // check output
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
361 362 363 364 365 366 367 368 369 370 371
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                     "Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
                     "null at same time");
    }
    const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
    if (use_global_stats) {
      PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_mkldnn"),
                     "Using global stats during training is not supported "
                     "in gradient op kernel of batch_norm_mkldnn_op now.");
    }
Q
Qiao Longfei 已提交
372 373

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
374 375
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
376
    const int C =
Q
QI JUN 已提交
377 378
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
379 380

    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
381 382 383 384
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
      ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
    }
Q
Qiao Longfei 已提交
385
  }
Q
Qiao Longfei 已提交
386

Y
Yu Yang 已提交
387
 protected:
388
  framework::OpKernelType GetExpectedKernelType(
Q
Qiao Longfei 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
403

M
mozga-intel 已提交
404
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
405 406 407
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

408
#ifdef PADDLE_WITH_MKLDNN
409
    if (library == framework::LibraryType::kPlain &&
410
        platform::CanMKLDNNBeUsed(ctx)) {
411 412
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
413 414
    }
#endif
415

416 417
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
418
        layout, library);
Q
Qiao Longfei 已提交
419
  }
Q
Qiao Longfei 已提交
420 421 422
};

template <typename T>
Q
QI JUN 已提交
423
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
424 425 426 427 428 429 430 431 432
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
433
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
434 435
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
436 437
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
438 439 440 441

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
442 443
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
444 445
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
446 447
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
448 449 450 451 452 453 454 455
    const int sample_size = x->numel() / N / C;

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

      inv_var_tmp = (var_arr + epsilon).sqrt().inverse().eval();
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
484 485 486 487 488

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
489 490
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
491

492 493 494 495
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
496

497 498
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
499 500 501
      return;
    }

502 503
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
504

Q
QI JUN 已提交
505 506
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
507 508 509 510 511 512
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

513 514 515 516 517 518 519 520
        if (d_scale && d_bias) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_bias_arr(c) += d_y_arr.col(nc).sum();
            d_scale_arr(c) += ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) *
                               d_y_arr.col(nc))
                                  .sum();
          }
Q
Qiao Longfei 已提交
521
        }
522 523 524 525 526 527 528 529 530 531 532 533 534 535
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) +=
                scale_inv_var_nhw(c) *
                (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) *
                     inv_var_arr(c));
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) += scale_inv_var_nhw(c) * d_y_arr.col(nc);
          }
Q
Qiao Longfei 已提交
536 537 538
        }
        break;
      }
Q
QI JUN 已提交
539
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
540 541 542 543 544 545 546 547 548 549 550
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

        const auto d_y_row_sum = d_y_arr.rowwise().sum();
        const auto x_minus_mean = x_arr.colwise() - mean_arr;
        const auto d_y_mul_x_minus_mean_row_sum =
            (d_y_arr * x_minus_mean).rowwise().sum();
        const auto inv_var_sqr = inv_var_arr * inv_var_arr;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

        if (d_scale && d_bias) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_bias_arr += d_y_arr.col(nhw);
            d_scale_arr +=
                (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
          }
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) +=
                scale_inv_var_nhw *
                (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
                 x_minus_mean.col(nhw) * inv_var_sqr *
                     d_y_mul_x_minus_mean_row_sum);
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) += scale_inv_var_nhw * d_y_arr.col(nhw);
          }
Q
Qiao Longfei 已提交
572 573 574 575
        }
        break;
      }
      default:
Q
QI JUN 已提交
576
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
577 578 579 580
    }
  }
};

Y
Yu Yang 已提交
581 582 583 584 585 586 587 588 589 590 591 592
class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
    op->SetType("batch_norm_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

    op->SetInput("Scale", Input("Scale"));
593
    op->SetInput("Bias", Input("Bias"));
Y
Yu Yang 已提交
594 595 596
    op->SetInput("SavedMean", Output("SavedMean"));
    op->SetInput("SavedVariance", Output("SavedVariance"));

597 598 599 600
    // used when setting use_global_stats True during training
    op->SetInput("Mean", Output("MeanOut"));
    op->SetInput("Variance", Output("VarianceOut"));

Y
Yu Yang 已提交
601 602 603 604 605 606 607 608 609 610
    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
Qiao Longfei 已提交
611 612 613 614
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
615
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
C
chengduo 已提交
616
                  ops::BatchNormOpInferVarType, ops::BatchNormGradMaker);
Y
Yu Yang 已提交
617 618
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);

Q
QI JUN 已提交
619
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
620 621
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
622 623
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
624 625
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);