op_teller.cc 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
S
Shang Zhizhou 已提交
16 17
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/var_desc.h"
18 19 20 21 22 23 24

namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
25 26 27
  SimpleOpTypeSetTeller() {
#if IS_TRT_VERSION_GE(5130)
    teller_set.insert("relu6");
28
    teller_set.insert("hard_sigmoid");
29 30 31 32 33
#endif
#if IS_TRT_VERSION_GE(6000)
    teller_set.insert("fused_embedding_eltwise_layernorm");
    teller_set.insert("multihead_matmul");
    teller_set.insert("skip_layernorm");
34
    teller_set.insert("slice");
35 36
#endif
  }
37

38 39 40 41 42 43 44
  bool operator()(const std::string& op_type, const framework::OpDesc& desc,
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
45 46 47
  }

 private:
48
  // use this set for no calib int8.
49 50 51 52 53 54 55 56 57 58 59
  std::unordered_set<std::string> int8_teller_set{"mul",
                                                  "conv2d",
                                                  "pool2d",
                                                  "relu",
                                                  "depthwise_conv2d",
                                                  "softmax",
                                                  "batch_norm",
                                                  "elementwise_add",
                                                  "leaky_relu",
                                                  "fc",
                                                  "relu6",
60 61 62 63
                                                  "concat",
                                                  "scale",
                                                  "elementwise_mul",
                                                  "conv2d_transpose"};
64
  std::unordered_set<std::string> teller_set{
65
      "mul",
S
Shang Zhizhou 已提交
66
      "matmul",
67 68 69 70 71
      "conv2d",
      "pool2d",
      "relu",
      "softmax",
      "sigmoid",
72
      "hard_swish",
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_mul",
      "dropout",
      "prelu",
      "conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
91
      "scale",
92
      "stack",
93
  };
94 95
};

96 97
bool OpTeller::Tell(const std::string& op_type, const framework::OpDesc& desc,
                    bool use_no_calib_int8) {
98
  // do not support the op which is labeled the `skip_quant`
99 100 101 102
  if ((desc.HasAttr("namescope") &&
       boost::get<std::string>(desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
103
    return false;
104

105
  for (auto& teller : tellers_) {
106 107 108 109
    if (op_type == "pool2d" || op_type == "conv2d" ||
        op_type == "depthwise_conv2d" || op_type == "conv2d_transpose") {
      std::vector<int> paddings =
          boost::get<std::vector<int>>(desc.GetAttr("paddings"));
110 111 112 113 114 115 116 117

      std::string padding_algorithm = "EXPLICIT";
      if (desc.HasAttr("padding_algorithm"))
        padding_algorithm =
            boost::get<std::string>(desc.GetAttr("padding_algorithm"));
      if (paddings.size() > 2 ||
          (padding_algorithm == "SAME" && op_type != "pool2d"))
        return false;
118
    }
S
Shang Zhizhou 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    if (op_type == "matmul") {
      auto* block = desc.Block();
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
            VLOG(1)
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
    }
134
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
135 136 137 138 139 140 141 142 143
  }
  return false;
}

OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle