未验证 提交 78d68d59 编写于 作者: S Shang Zhizhou 提交者: GitHub

Ernie varlen to 1.8 (#28400)

* Fix TRT plugin registry without TRT lib (#25982)

* fix trt plugin registry without trt lib

* support trt4

* refine code style

* pick ea851796 from develop

* cherry-pick develop PR  #26273 && #27796

* fix unittest error

* fix unittest error

* remove const_cast
Co-authored-by: NPei Yang <peiyang@baidu.com>
上级 cb2ad898
......@@ -194,6 +194,7 @@ struct Argument {
DECL_ARGUMENT_FIELD(tensorrt_use_static_engine, TensorRtUseStaticEngine,
bool);
DECL_ARGUMENT_FIELD(tensorrt_use_calib_mode, TensorRtUseCalibMode, bool);
DECL_ARGUMENT_FIELD(tensorrt_use_oss, TensorRtUseOSS, bool);
DECL_ARGUMENT_FIELD(lite_passes_filter, LitePassesFilter,
std::vector<std::string>);
......
......@@ -93,6 +93,7 @@ void IRPassManager::CreatePasses(Argument *argument,
bool use_calib_mode = argument->tensorrt_use_calib_mode();
pass->Set("enable_int8", new bool(enable_int8));
pass->Set("use_calib_mode", new bool(use_calib_mode));
pass->Set("use_oss", new bool(argument->tensorrt_use_oss()));
pass->Set("precision_mode",
new AnalysisConfig::Precision(precision_mode));
......
......@@ -114,11 +114,20 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
block_desc.Proto()->set_idx(0);
LOG(INFO) << "--- detect a sub-graph with " << subgraph.size() << " nodes";
bool has_fused_embedding_eltwise_layernorm = false;
bool has_multihead_matmul = false;
for (auto *node : subgraph) {
auto *new_block_op = new_block->AppendOp();
auto *op = block_desc.AppendOp();
*new_block_op->Proto() = *node->Op()->Proto();
*op->Proto() = *node->Op()->Proto();
if (!has_fused_embedding_eltwise_layernorm &&
op->Type() == "fused_embedding_eltwise_layernorm") {
has_fused_embedding_eltwise_layernorm = true;
}
if (!has_multihead_matmul && op->Type() == "multihead_matmul") {
has_multihead_matmul = true;
}
}
// Then, we will use the input_names_with_id and output_names_with_id to
......@@ -300,6 +309,9 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
precision_mode, calibrator.get(), Get<int>("gpu_device_id"),
min_input_shape, max_input_shape, opt_input_shape,
disable_trt_plugin_fp16);
trt_engine->SetUseOSS(Get<bool>("use_oss"));
trt_engine->SetWithErnie(has_multihead_matmul &&
has_fused_embedding_eltwise_layernorm);
bool need_serialize = (use_static_engine && !load_from_memory);
if (need_serialize) {
......
......@@ -122,6 +122,7 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
CP_MEMBER(tensorrt_precision_mode_);
CP_MEMBER(trt_use_static_engine_);
CP_MEMBER(trt_use_calib_mode_);
CP_MEMBER(trt_use_oss_);
// MKLDNN related.
CP_MEMBER(use_mkldnn_);
CP_MEMBER(mkldnn_enabled_op_types_);
......@@ -258,6 +259,8 @@ void AnalysisConfig::SetTRTDynamicShapeInfo(
disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
// TODO(Superjomn) refactor this, buggy.
void AnalysisConfig::Update() {
auto info = SerializeInfoCache();
......
......@@ -437,6 +437,7 @@ void AnalysisPredictor::PrepareArgument() {
argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
argument_.SetMinInputShape(config_.min_input_shape_);
argument_.SetMaxInputShape(config_.max_input_shape_);
argument_.SetOptimInputShape(config_.optim_input_shape_);
......@@ -953,7 +954,7 @@ USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(matmul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
......
......@@ -312,6 +312,22 @@ struct AnalysisConfig {
std::map<std::string, std::vector<int>> max_input_shape,
std::map<std::string, std::vector<int>> optim_input_shape,
bool disable_trt_plugin_fp16 = false);
///
/// \brief Replace some TensorRT plugins to TensorRT OSS(
/// https://github.com/NVIDIA/TensorRT), with which some models's inference
/// may
/// be more high-performance. Libnvinfer_plugin.so greater than V7.2.1 is
/// needed.
///
void EnableTensorRtOSS();
///
/// \brief A boolean state telling whether to use the TensorRT OSS.
///
/// \return bool Whether to use the TensorRT OSS.
///
bool tensorrt_oss_enabled() { return trt_use_oss_; }
///
/// \brief Turn on the usage of Lite sub-graph engine.
///
......@@ -531,6 +547,7 @@ struct AnalysisConfig {
Precision tensorrt_precision_mode_{Precision::kFloat32};
bool trt_use_static_engine_{false};
bool trt_use_calib_mode_{true};
bool trt_use_oss_{false};
std::map<std::string, std::vector<int>> min_input_shape_{};
std::map<std::string, std::vector<int>> max_input_shape_{};
std::map<std::string, std::vector<int>> optim_input_shape_{};
......
# Add TRT tests
nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
SRCS matmul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc gelu_op.cc layer_norm_op.cc multihead_matmul_op.cc
shuffle_channel_op.cc swish_op.cc instance_norm_op.cc stack_op.cc
......
......@@ -40,6 +40,9 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
input_ids.push_back(engine_->GetITensor(id_names[i]));
}
// input_embs[0]: word_embedding
// input_embs[1]: pos_embedding
// input_embs[2]: sent_embedding
std::vector<float*> input_embs;
std::vector<int> emb_sizes;
......@@ -76,15 +79,90 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
get_persistable_data(op_desc.Input("Scale").front(), &scale_dims);
int64_t bias_size = framework::product(bias_dims);
int64_t scale_size = framework::product(scale_dims);
float eps = boost::get<float>(op_desc.GetAttr("epsilon"));
nvinfer1::ILayer* layer = nullptr;
if (engine_->with_dynamic_shape()) {
auto use_fp16 = engine_->WithFp16();
auto plugin = new plugin::EmbEltwiseLayernormPluginDynamic(
input_embs, bias, scale, emb_sizes, bias_size, scale_size, hidden,
eps, use_fp16);
layer = engine_->AddPluginV2(input_ids.data(), input_num, plugin);
if (engine_->use_oss()) {
int output_fp16 = static_cast<int>((engine_->WithFp16() == 1) ? 1 : 0);
PADDLE_ENFORCE_EQ(
output_fp16, 1,
platform::errors::InvalidArgument(
"Only Precision::KHalf(fp16) is supported when infering "
"ernie(bert) model with config.EnableTensorRtOSS(). "
"But Precision::KFloat32 is setted."));
const std::vector<nvinfer1::PluginField> fields{
{"bert_embeddings_layernorm_beta", bias,
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(bias_size)},
{"bert_embeddings_layernorm_gamma", scale,
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(scale_size)},
{"bert_embeddings_word_embeddings", input_embs[0],
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(emb_sizes[0])},
{"bert_embeddings_token_type_embeddings", input_embs[2],
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(emb_sizes[2])},
{"bert_embeddings_position_embeddings", input_embs[1],
nvinfer1::PluginFieldType::kFLOAT32,
static_cast<int32_t>(emb_sizes[1])},
{"output_fp16", &output_fp16, nvinfer1::PluginFieldType::kINT32, 1},
};
// remember to free
nvinfer1::PluginFieldCollection* plugin_ptr =
static_cast<nvinfer1::PluginFieldCollection*>(
malloc(sizeof(*plugin_ptr) +
fields.size() * sizeof(nvinfer1::PluginField)));
plugin_ptr->nbFields = static_cast<int>(fields.size());
plugin_ptr->fields = fields.data();
std::vector<nvinfer1::ITensor*> plugin_inputs;
plugin_inputs.emplace_back(engine_->GetITensor(
engine_->network()->getInput(0)->getName())); // word_embedding,
// eval_placeholder_0
plugin_inputs.emplace_back(engine_->GetITensor(
engine_->network()->getInput(1)->getName())); // sent_embedding,
// eval_placeholder_1
plugin_inputs.emplace_back(engine_->GetITensor(
engine_->network()->getInput(2)->getName())); // cu_seqlens,
// eval_placeholder_2
auto max_seqlen_tensor =
engine_->GetITensor(engine_->network()->getInput(3)->getName());
auto* shuffle_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *max_seqlen_tensor);
nvinfer1::Dims shape_dim;
shape_dim.nbDims = 1;
shape_dim.d[0] = -1;
shuffle_layer->setReshapeDimensions(shape_dim);
plugin_inputs.emplace_back(
shuffle_layer->getOutput(0)); // max_seqlen, eval_placeholder_3
auto creator = GetPluginRegistry()->getPluginCreator(
"CustomEmbLayerNormPluginDynamic", "2");
auto plugin_obj = creator->createPlugin(
"CustomEmbLayerNormPluginDynamic", plugin_ptr);
auto plugin_layer = engine_->network()->addPluginV2(
plugin_inputs.data(), plugin_inputs.size(), *plugin_obj);
layer = plugin_layer;
free(plugin_ptr);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "emb_eltwise_layernorm",
{output_name, std::string("qkv_plugin_mask")},
test_mode);
} else {
bool use_fp16 = engine_->WithFp16();
float eps = boost::get<float>(op_desc.GetAttr("epsilon"));
plugin::DynamicPluginTensorRT* plugin = nullptr;
plugin = new plugin::EmbEltwiseLayernormPluginDynamic(
input_embs, bias, scale, emb_sizes, bias_size, scale_size, hidden,
eps, use_fp16);
layer = engine_->AddPluginV2(input_ids.data(), input_num, plugin);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "emb_eltwise_layernorm", {output_name},
test_mode);
}
} else {
PADDLE_THROW(platform::errors::Fatal(
"You are running the Ernie(Bert) model in static"
......@@ -93,9 +171,6 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
" to set the shape information to run the dynamic shape mode."));
}
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "emb_eltwise_layernorm", {output_name},
test_mode);
#else
PADDLE_THROW(platform::errors::Fatal(
"You are running the TRT Dynamic Shape mode, need to confirm that "
......
......@@ -14,30 +14,67 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* MulOp, IMatrixMultiplyLayer in TRT. This Layer doesn't has weights.
* MatMulOp, IMatrixMultiplyLayer in TRT. This Layer doesn't has weights.
*/
class MulOpConverter : public OpConverter {
class MatMulOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(3) << "convert a fluid mul op to tensorrt mul layer without bias";
VLOG(3) << "convert a fluid matmul op to tensorrt mul layer without bias";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
// Both the input1 and input2 do not need transpose.
auto* layer = TRT_ENGINE_ADD_LAYER(
engine_, MatrixMultiply, *const_cast<nvinfer1::ITensor*>(input1), false,
*const_cast<nvinfer1::ITensor*>(input2), false);
bool transpose_X = boost::get<bool>(op_desc.GetAttr("transpose_X"));
bool transpose_Y = boost::get<bool>(op_desc.GetAttr("transpose_Y"));
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, MatrixMultiply, *input1,
transpose_X, *input2, transpose_Y);
float alpha = boost::get<float>(op_desc.GetAttr("alpha"));
auto output_name = op_desc.Output("Out")[0];
engine_->SetITensor(output_name, layer->getOutput(0));
if (fabs(alpha - 1.0) < std::numeric_limits<float>::epsilon()) {
engine_->SetITensor(output_name, layer->getOutput(0));
} else {
auto create_weights = [&](float data, const std::string& type) -> float* {
std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
tmp_tensor->Resize({1});
auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
tmp_data[0] = data;
engine_->SetWeights(output_name + "_add_scale_op_" + type,
std::move(tmp_tensor));
return tmp_data;
};
float* alpha_data = create_weights(alpha, "alpha");
float* shift_data = create_weights(0.0, "shift");
float* power_data = create_weights(1.0, "power");
TensorRTEngine::Weight nv_alpha{nvinfer1::DataType::kFLOAT,
static_cast<void*>(alpha_data), 1};
TensorRTEngine::Weight nv_shift{nvinfer1::DataType::kFLOAT,
static_cast<void*>(shift_data), 1};
TensorRTEngine::Weight nv_power{nvinfer1::DataType::kFLOAT,
static_cast<void*>(power_data), 1};
auto* scale_layer = TRT_ENGINE_ADD_LAYER(
engine_, Scale, *layer->getOutput(0), nvinfer1::ScaleMode::kUNIFORM,
nv_shift.get(), nv_alpha.get(), nv_power.get());
engine_->SetITensor(output_name, scale_layer->getOutput(0));
}
if (test_mode) { // the test framework can not determine which is the
// output, so place the declaration inside.
engine_->DeclareOutput(output_name);
......@@ -49,4 +86,4 @@ class MulOpConverter : public OpConverter {
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter);
REGISTER_TRT_OP_CONVERTER(matmul, MatMulOpConverter);
......@@ -30,7 +30,6 @@ class MultiheadMatMulOpConverter : public OpConverter {
// Declare inputs
// Shouble be a 5 dims tensor.
auto* input = engine_->GetITensor(op_desc.Input("Input").front());
auto* input_bias_qk = engine_->GetITensor(op_desc.Input("BiasQK").front());
// fc weights and fc bias
auto weight_name = op_desc.Input("W").front();
......@@ -50,7 +49,7 @@ class MultiheadMatMulOpConverter : public OpConverter {
memcpy(weight_data_tmp.data(), weight_data,
weight_t->numel() * sizeof(float));
// (hidden, 3, all_head_size)
// (hidden, 3, all_head_size)
auto weight_dims = weight_t->dims();
int hidden = weight_dims[0]; // channels_in
......@@ -65,36 +64,139 @@ class MultiheadMatMulOpConverter : public OpConverter {
}
}
};
// transpose weight_data from m * n to n * m
tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
static_cast<void*>(weight_data),
static_cast<size_t>(weight_t->numel())};
weight.dims.assign({n, m});
TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
static_cast<void*>(bias_data),
static_cast<size_t>(bias_t->numel())};
auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input, n,
weight.get(), bias.get());
auto* fc_out = fc_layer->getOutput(0);
// add qkv to context
int head_number = boost::get<int>(op_desc.GetAttr("head_number"));
int head_size = all_head_size / head_number;
float scale = boost::get<float>(op_desc.GetAttr("alpha"));
std::vector<nvinfer1::ITensor*> plugin_inputs;
plugin_inputs.push_back(fc_out);
plugin_inputs.push_back(input_bias_qk);
nvinfer1::ILayer* layer = nullptr;
if (engine_->with_dynamic_shape()) {
bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::DynamicPluginTensorRT* plugin =
new plugin::QkvToContextPluginDynamic(hidden, head_number, head_size,
scale, ban_fp16);
layer = engine_->AddPluginV2(plugin_inputs.data(), 2, plugin);
if (engine_->use_oss()) {
int head_size = hidden / head_number;
// [3, Nout, Hout, Nin, Hin] -> [Nout, 3, Hout, Nin, Hin]
auto transpose_weight_v2 = [](const float* src, float* dst, int N,
int H) {
const int HNH = H * N * H;
for (int i = 0; i < 3; ++i) {
for (int n = 0; n < N; ++n) {
for (int hnh = 0; hnh < HNH; ++hnh) {
dst[n * 3 * HNH + i * HNH + hnh] =
src[i * N * HNH + n * HNH + hnh];
}
}
}
};
// [3, N, H] -> [N, 3, H]
auto transpose_bias_v2 = [](const float* src, float* dst, int N,
int H) {
for (int i = 0; i < 3; ++i) {
for (int n = 0; n < N; ++n) {
for (int h = 0; h < H; ++h) {
dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h];
}
}
}
};
memcpy(weight_data_tmp.data(), weight_data,
weight_t->numel() * sizeof(float));
transpose_weight_v2(weight_data_tmp.data(), weight_data, head_number,
head_size);
nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT,
static_cast<void*>(weight_data),
static_cast<int32_t>(weight_t->numel())};
std::vector<float> bias_data_tmp;
bias_data_tmp.reserve(bias_t->numel());
memcpy(bias_data_tmp.data(), bias_data,
bias_t->numel() * sizeof(float));
transpose_bias_v2(bias_data_tmp.data(), bias_data, head_number,
head_size);
nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT,
static_cast<void*>(bias_data),
static_cast<int32_t>(bias_t->numel())};
auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input,
n, weight, bias);
auto mask_tensor = engine_->GetITensor("qkv_plugin_mask");
auto creator = GetPluginRegistry()->getPluginCreator(
"CustomQKVToContextPluginDynamic", "2");
assert(creator != nullptr);
int type = static_cast<int>((engine_->WithFp16() == 1)
? nvinfer1::DataType::kHALF
: nvinfer1::DataType::kFLOAT);
bool has_mask = true;
int var_seqlen = 1;
const std::vector<nvinfer1::PluginField> fields{
{"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
{"hidden_size", &hidden, nvinfer1::PluginFieldType::kINT32, 1},
{"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1},
{"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1},
{"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32, 1},
};
nvinfer1::PluginFieldCollection* plugin_collection =
static_cast<nvinfer1::PluginFieldCollection*>(
malloc(sizeof(*plugin_collection) +
fields.size() *
sizeof(nvinfer1::PluginField))); // remember to free
plugin_collection->nbFields = static_cast<int>(fields.size());
plugin_collection->fields = fields.data();
auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
plugin_collection);
free(plugin_collection);
std::vector<nvinfer1::ITensor*> plugin_inputs;
plugin_inputs.emplace_back(fc_layer->getOutput(0));
plugin_inputs.emplace_back(mask_tensor);
plugin_inputs.emplace_back(engine_->GetITensor(
engine_->network()->getInput(2)->getName())); // cu_seqlens,
// eval_placeholder_2
auto max_seqlen_tensor =
engine_->GetITensor(engine_->network()->getInput(3)->getName());
auto* shuffle_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *max_seqlen_tensor);
nvinfer1::Dims shape_dim;
shape_dim.nbDims = 1;
shape_dim.d[0] = -1;
shuffle_layer->setReshapeDimensions(shape_dim);
plugin_inputs.emplace_back(
shuffle_layer->getOutput(0)); // max_seqlen, eval_placeholder_3
auto plugin_layer = engine_->network()->addPluginV2(
plugin_inputs.data(), plugin_inputs.size(), *plugin);
layer = plugin_layer;
} else {
// transpose weight_data from m * n to n * m
auto* input_bias_qk =
engine_->GetITensor(op_desc.Input("BiasQK").front());
TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
static_cast<void*>(weight_data),
static_cast<size_t>(weight_t->numel())};
weight.dims.assign({n, m});
TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
static_cast<void*>(bias_data),
static_cast<size_t>(bias_t->numel())};
auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input,
n, weight.get(), bias.get());
auto* fc_out = fc_layer->getOutput(0);
// add qkv to context
int head_size = all_head_size / head_number;
float scale = boost::get<float>(op_desc.GetAttr("alpha"));
std::vector<nvinfer1::ITensor*> plugin_inputs;
plugin_inputs.push_back(fc_out);
plugin_inputs.push_back(input_bias_qk);
bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::DynamicPluginTensorRT* plugin =
new plugin::QkvToContextPluginDynamic(hidden, head_number,
head_size, scale, ban_fp16);
layer = engine_->AddPluginV2(plugin_inputs.data(), 2, plugin);
}
} else {
PADDLE_THROW(platform::errors::Fatal(
"You are running the Ernie(Bert) model in static shape mode, which "
......
......@@ -145,6 +145,7 @@ class OpConverter {
const std::unordered_set<std::string>& parameters,
const std::vector<std::string>& outputs, TensorRTEngine* engine) {
engine->InitNetwork();
bool all_dynamic_shape_set = true;
for (auto& input : inputs) {
if (parameters.count(input)) continue;
auto* var = block_desc->FindVar(input);
......@@ -158,6 +159,13 @@ class OpConverter {
auto max_input_shape = engine->max_input_shape()[input];
auto optim_input_shape = engine->optim_input_shape()[input];
size_t ranks = min_input_shape.size();
if (ranks == 0) {
all_dynamic_shape_set = false;
LOG(INFO) << "trt input [" << input.c_str()
<< "] dynamic shape info not set, please check and retry.";
// check other input
continue;
}
std::vector<int64_t> input_shape;
input_shape.push_back(-1);
for (size_t i = 1; i < ranks; i++) {
......@@ -184,6 +192,10 @@ class OpConverter {
Vec2TRT_Dims(var_shape, input));
}
}
PADDLE_ENFORCE_EQ(all_dynamic_shape_set, true,
platform::errors::InvalidArgument(
"some trt inputs dynamic shape info not set, "
"check the INFO log above for more details."));
framework::proto::BlockDesc* block_proto = block_desc->Proto();
ConvertBlock(*block_proto, parameters, scope, engine);
for (auto& output : outputs) {
......
......@@ -47,17 +47,50 @@ class SkipLayerNormOpConverter : public OpConverter {
framework::DDim bias_dims, scale_dims;
auto* bias = get_persistable_data("Bias", &bias_dims);
auto* scale = get_persistable_data("Scale", &scale_dims);
float eps = boost::get<float>(op_desc.GetAttr("epsilon"));
int bias_size = framework::product(bias_dims);
int scale_size = framework::product(scale_dims);
nvinfer1::ILayer* layer = nullptr;
if (engine_->with_dynamic_shape()) {
bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::SkipLayerNormPluginDynamic* plugin =
new plugin::SkipLayerNormPluginDynamic(bias, scale, bias_size,
scale_size, eps, ban_fp16);
layer = engine_->AddPluginV2(inputs.data(), 2, plugin);
if (engine_->use_oss()) {
auto creator = GetPluginRegistry()->getPluginCreator(
"CustomSkipLayerNormPluginDynamic", "2");
assert(creator != nullptr);
int type = static_cast<int>((engine_->WithFp16() == 1)
? nvinfer1::DataType::kHALF
: nvinfer1::DataType::kFLOAT);
int ld = input1->getDimensions().d[2]; // hidden dimension
assert(ld > 0);
const std::vector<nvinfer1::PluginField> fields{
{"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
{"ld", &ld, nvinfer1::PluginFieldType::kINT32, 1},
{"beta", bias, nvinfer1::PluginFieldType::kFLOAT32, bias_size},
{"gamma", scale, nvinfer1::PluginFieldType::kFLOAT32, scale_size},
};
nvinfer1::PluginFieldCollection* pluginPtr =
static_cast<nvinfer1::PluginFieldCollection*>(
malloc(sizeof(*pluginPtr) +
fields.size() *
sizeof(nvinfer1::PluginField))); // remember to free
pluginPtr->nbFields = static_cast<int>(fields.size());
pluginPtr->fields = fields.data();
auto pluginObj = creator->createPlugin(
"CustomSkipLayerNormPluginDynamic", pluginPtr);
auto plugin_layer = engine_->network()->addPluginV2(
inputs.data(), inputs.size(), *pluginObj);
assert(plugin_layer != nullptr);
layer = plugin_layer;
} else {
float eps = boost::get<float>(op_desc.GetAttr("epsilon"));
bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::SkipLayerNormPluginDynamic* plugin =
new plugin::SkipLayerNormPluginDynamic(bias, scale, bias_size,
scale_size, eps, ban_fp16);
layer = engine_->AddPluginV2(inputs.data(), 2, plugin);
}
} else {
PADDLE_THROW(platform::errors::Fatal(
"You are running the Ernie(Bert) model in static"
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h"
namespace paddle {
namespace inference {
......@@ -77,16 +78,31 @@ class SliceOpConverter : public OpConverter {
nvinfer1::ILayer* layer = nullptr;
if (engine_->with_dynamic_shape()) {
if (engine_->use_oss() && engine_->with_ernie()) {
std::vector<nvinfer1::ITensor*> plugin_inputs;
// plugin_inputs.emplace_back(trans_layer->getOutput(0));
plugin_inputs.emplace_back(input);
plugin_inputs.emplace_back(engine_->GetITensor(
engine_->network()->getInput(2)->getName())); // cu_seqlens,
// eval_placeholder_2
// bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::SpecialSlicePluginDynamic* plugin =
new plugin::SpecialSlicePluginDynamic();
layer = engine_->AddPluginV2(plugin_inputs.data(), plugin_inputs.size(),
plugin);
} else {
#if IS_TRT_VERSION_GE(6000)
bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::SlicePluginDynamic* plugin =
new plugin::SlicePluginDynamic(starts, ends, axes, ban_fp16);
layer = engine_->AddPluginV2(&input, 1, plugin);
bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::SlicePluginDynamic* plugin =
new plugin::SlicePluginDynamic(starts, ends, axes, ban_fp16);
layer = engine_->AddPluginV2(&input, 1, plugin);
#else
PADDLE_THROW(platform::errors::Fatal(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"));
PADDLE_THROW(platform::errors::Fatal(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"));
#endif
}
} else {
bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin::SlicePlugin* plugin =
......
......@@ -60,9 +60,9 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
bool with_dynamic_shape = false) {
PADDLE_ENFORCE_GT(shape.size(), 1UL,
PADDLE_ENFORCE_GT(shape.size(), 0UL,
platform::errors::InvalidArgument(
"TensorRT's tensor input requires at least 2 "
"TensorRT's tensor input requires at least 1 "
"dimensions, but input %s has %d dims.",
input, shape.size()));
PADDLE_ENFORCE_LE(shape.size(), 4UL,
......@@ -83,7 +83,12 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
} else if (shape.size() == 3UL) {
return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
}
return nvinfer1::Dims4(shape[0], shape[1], 1, 1);
nvinfer1::Dims dims;
dims.nbDims = shape.size();
for (size_t i = 0; i < shape.size(); i++) {
dims.d[i] = shape[i];
}
return dims;
}
}
} // NOLINT
......@@ -157,6 +162,7 @@ class TensorRTEngine {
"version should be at least 6.";
#endif
}
dy::initLibNvInferPlugins(&logger, "");
}
~TensorRTEngine() {}
......@@ -260,6 +266,9 @@ class TensorRTEngine {
suffix_counter += 1;
}
void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
void ClearWeights() {
for (auto& weight_pair : weight_map) {
weight_pair.second.reset(nullptr);
......@@ -287,6 +296,8 @@ class TensorRTEngine {
ShapeMapType min_input_shape() { return min_input_shape_; }
ShapeMapType max_input_shape() { return max_input_shape_; }
ShapeMapType optim_input_shape() { return optim_input_shape_; }
bool use_oss() { return use_oss_; }
bool with_ernie() { return with_ernie_; }
bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
bool with_dynamic_shape() { return with_dynamic_shape_; }
......@@ -322,6 +333,8 @@ class TensorRTEngine {
ShapeMapType max_input_shape_;
ShapeMapType optim_input_shape_;
bool disable_trt_plugin_fp16_{false};
bool use_oss_{false};
bool with_ernie_{false};
nvinfer1::ILogger& logger_;
// max data size for the buffers.
......
......@@ -56,9 +56,11 @@ static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
return static_cast<nvinfer1::IRuntime*>(
dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
}
static nvinfer1::IPluginRegistry* getPluginRegistry() {
#if IS_TRT_VERSION_GE(6000)
static nvinfer1::IPluginRegistry* GetPluginRegistry() {
return static_cast<nvinfer1::IPluginRegistry*>(dy::getPluginRegistry());
}
#endif
// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
......
......@@ -13,6 +13,8 @@
// limitations under the License.
#include "paddle/fluid/inference/tensorrt/op_teller.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/var_desc.h"
namespace paddle {
namespace inference {
......@@ -61,6 +63,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"conv2d_transpose"};
std::unordered_set<std::string> teller_set{
"mul",
"matmul",
"conv2d",
"pool2d",
"relu",
......@@ -106,6 +109,21 @@ bool OpTeller::Tell(const std::string& op_type, const framework::OpDesc& desc,
boost::get<std::vector<int>>(desc.GetAttr("paddings"));
if (paddings.size() > 2) return false;
}
if (op_type == "matmul") {
auto* block = desc.Block();
for (auto& param_name : desc.Inputs()) {
for (auto& var_name : param_name.second) {
auto* var_desc = block->FindVar(var_name);
const auto shape = var_desc->GetShape();
if (shape.size() < 3) {
VLOG(1)
<< "matmul op dims < 3 not supported in tensorrt, but got dims "
<< shape.size() << ", so jump it.";
return false;
}
}
}
}
if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
}
return false;
......
......@@ -4,5 +4,5 @@ nv_library(tensorrt_plugin
pool_op_plugin.cu swish_op_plugin.cu layer_norm_op_plugin.cu
instance_norm_op_plugin.cu emb_eltwise_layernorm_plugin.cu
qkv_to_context_plugin.cu skip_layernorm_op_plugin.cu slice_op_plugin.cu
hard_swish_op_plugin.cu stack_op_plugin.cu
hard_swish_op_plugin.cu stack_op_plugin.cu special_slice_plugin.cu
DEPS enforce tensorrt_engine prelu tensor bert_encoder_functor)
......@@ -80,6 +80,12 @@ int PReluPlugin::enqueue(int batch_size, const void *const *inputs,
#if IS_TRT_VERSION_GE(6000)
void PReluPluginDynamic::terminate() {
if (p_gpu_weight_) {
cudaFree(p_gpu_weight_);
}
}
int PReluPluginDynamic::initialize() {
cudaMalloc(&p_gpu_weight_, sizeof(float) * weight_.size());
cudaMemcpy(p_gpu_weight_, weight_.data(), weight_.size() * sizeof(float),
......
......@@ -102,12 +102,15 @@ class PReluPluginDynamic : public DynamicPluginTensorRT {
}
~PReluPluginDynamic() { cudaFree(p_gpu_weight_); }
nvinfer1::IPluginV2DynamicExt* clone() const override {
return new PReluPluginDynamic(weight_.data(), weight_.size(), mode_);
auto ptr = new PReluPluginDynamic(weight_.data(), weight_.size(), mode_);
ptr->p_gpu_weight_ = p_gpu_weight_;
return ptr;
}
const char* getPluginType() const override { return "prelu_plugin"; }
int getNbOutputs() const override { return 1; }
int initialize() override;
void terminate() override;
size_t getSerializationSize() const override;
void serialize(void* buffer) const override;
......
......@@ -51,8 +51,11 @@ class SkipLayerNormPluginDynamic : public DynamicPluginTensorRT {
}
nvinfer1::IPluginV2DynamicExt* clone() const override {
return new SkipLayerNormPluginDynamic(
auto ptr = new SkipLayerNormPluginDynamic(
bias_.data(), scale_.data(), bias_size_, scale_size_, eps_, ban_fp16_);
ptr->bias_gpu_ = bias_gpu_;
ptr->scale_gpu_ = bias_gpu_;
return ptr;
}
const char* getPluginType() const override { return "skip_layernorm_plugin"; }
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cassert>
#include <cstring>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
#if IS_TRT_VERSION_GE(6000)
SpecialSlicePluginDynamic::SpecialSlicePluginDynamic() {}
SpecialSlicePluginDynamic::SpecialSlicePluginDynamic(void const* serial_data,
size_t serial_length) {}
SpecialSlicePluginDynamic::~SpecialSlicePluginDynamic() {}
nvinfer1::IPluginV2DynamicExt* SpecialSlicePluginDynamic::clone() const {
return new SpecialSlicePluginDynamic();
}
const char* SpecialSlicePluginDynamic::getPluginType() const {
return "special_slice_plugin";
}
int SpecialSlicePluginDynamic::getNbOutputs() const { return 1; }
int SpecialSlicePluginDynamic::initialize() { return 0; }
size_t SpecialSlicePluginDynamic::getSerializationSize() const {
size_t serialize_size = 0;
return serialize_size;
}
void SpecialSlicePluginDynamic::serialize(void* buffer) const {}
nvinfer1::DimsExprs SpecialSlicePluginDynamic::getOutputDimensions(
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
nvinfer1::IExprBuilder& expr_builder) {
nvinfer1::DimsExprs output(inputs[0]);
auto one = expr_builder.constant(1);
output.d[0] = expr_builder.operation(nvinfer1::DimensionOperation::kSUB,
*inputs[1].d[0], *one);
return output;
}
void SpecialSlicePluginDynamic::configurePlugin(
const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) {}
size_t SpecialSlicePluginDynamic::getWorkspaceSize(
const nvinfer1::PluginTensorDesc* inputs, int nbInputs,
const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const {
return 0;
}
void SpecialSlicePluginDynamic::destroy() { delete this; }
void SpecialSlicePluginDynamic::terminate() {}
bool SpecialSlicePluginDynamic::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc* desc, int nb_inputs,
int nb_outputs) {
if (pos == 0) // slice tensor
return (desc[pos].type == nvinfer1::DataType::kHALF &&
desc[pos].format ==
nvinfer1::TensorFormat::kLINEAR); // || desc[pos].type ==
// nvinfer1::DataType::kFLOAT);
if (pos == 1) // cu_seqlen
return (desc[pos].type == nvinfer1::DataType::kINT32 &&
desc[pos].format == nvinfer1::TensorFormat::kLINEAR);
return (desc[pos].type == nvinfer1::DataType::kHALF &&
desc[pos].format ==
nvinfer1::TensorFormat::kLINEAR); // || desc[pos].type ==
// nvinfer1::DataType::kFLOAT);
}
nvinfer1::DataType SpecialSlicePluginDynamic::getOutputDataType(
int index, const nvinfer1::DataType* input_types, int nb_inputs) const {
PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
"The index should be equal to 0"));
return input_types[0];
}
template <typename T>
__global__ void SpecialSliceKernel(const T* slice_input,
const int32_t* cu_seqlens, T* output) {
const int hidden = blockDim.x;
const int batch = blockIdx.x;
output[batch * hidden + threadIdx.x] =
slice_input[cu_seqlens[batch] * hidden + threadIdx.x];
}
int SpecialSlicePluginDynamic::enqueue(
const nvinfer1::PluginTensorDesc* input_desc,
const nvinfer1::PluginTensorDesc* output_desc, const void* const* inputs,
void* const* outputs, void* workspace, cudaStream_t stream) {
auto input_dims = input_desc[0].dims; // (sum(S), 768, 1, 1)
auto out_dims = output_desc[0].dims; // (batch, 768, 1, 1)
assert(input_desc[0].type == nvinfer1::DataType::kHALF);
const int32_t hidden = input_dims.d[1];
const int num_blocks = out_dims.d[0]; // batch size
const int num_threads = hidden;
const half* slice_input = static_cast<const half*>(inputs[0]);
const int32_t* cu_seqlens = static_cast<const int32_t*>(inputs[1]);
half* output = static_cast<half*>(outputs[0]);
SpecialSliceKernel<<<num_blocks, num_threads, 0, stream>>>(
slice_input, cu_seqlens, output);
return cudaGetLastError() != cudaSuccess;
}
SpecialSlicePluginDynamicCreator::SpecialSlicePluginDynamicCreator() {}
const char* SpecialSlicePluginDynamicCreator::getPluginName() const {
return "special_slice_plugin";
}
const char* SpecialSlicePluginDynamicCreator::getPluginVersion() const {
return "1";
}
const nvinfer1::PluginFieldCollection*
SpecialSlicePluginDynamicCreator::getFieldNames() {
return &field_collection_;
}
nvinfer1::IPluginV2* SpecialSlicePluginDynamicCreator::createPlugin(
const char* name, const nvinfer1::PluginFieldCollection* fc) {
return new SpecialSlicePluginDynamic();
}
nvinfer1::IPluginV2* SpecialSlicePluginDynamicCreator::deserializePlugin(
const char* name, const void* serial_data, size_t serial_length) {
auto plugin = new SpecialSlicePluginDynamic(serial_data, serial_length);
return plugin;
}
void SpecialSlicePluginDynamicCreator::setPluginNamespace(
const char* lib_namespace) {
plugin_namespace_ = lib_namespace;
}
const char* SpecialSlicePluginDynamicCreator::getPluginNamespace() const {
return plugin_namespace_.c_str();
}
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdio.h>
#include <cassert>
#include <string>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
#if IS_TRT_VERSION_GE(6000)
class SpecialSlicePluginDynamic : public DynamicPluginTensorRT {
public:
SpecialSlicePluginDynamic();
SpecialSlicePluginDynamic(void const* serial_data, size_t serial_length);
~SpecialSlicePluginDynamic();
nvinfer1::IPluginV2DynamicExt* clone() const override;
nvinfer1::DimsExprs getOutputDimensions(
int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs,
nvinfer1::IExprBuilder& exprBuilder) override;
bool supportsFormatCombination(int pos,
const nvinfer1::PluginTensorDesc* inOut,
int nbInputs, int nbOutputs) override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out,
int nbOutputs) override;
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
int nbInputs,
const nvinfer1::PluginTensorDesc* outputs,
int nbOutputs) const override;
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) override;
nvinfer1::DataType getOutputDataType(int index,
const nvinfer1::DataType* inputTypes,
int nbInputs) const override;
const char* getPluginType() const override;
int getNbOutputs() const override;
int initialize() override;
void terminate() override;
size_t getSerializationSize() const override;
void serialize(void* buffer) const override;
void destroy() override;
private:
int axis_;
int num_stack_;
};
class SpecialSlicePluginDynamicCreator : public nvinfer1::IPluginCreator {
public:
SpecialSlicePluginDynamicCreator();
const char* getPluginName() const override;
const char* getPluginVersion() const override;
const nvinfer1::PluginFieldCollection* getFieldNames() override;
nvinfer1::IPluginV2* createPlugin(
const char* name, const nvinfer1::PluginFieldCollection* fc) override;
nvinfer1::IPluginV2* deserializePlugin(const char* name,
const void* serial_data,
size_t serial_length) override;
void setPluginNamespace(const char* lib_namespace) override;
const char* getPluginNamespace() const override;
private:
std::string plugin_namespace_;
nvinfer1::PluginFieldCollection field_collection_{0, nullptr};
std::vector<nvinfer1::PluginField> plugin_attributes_;
};
REGISTER_TRT_PLUGIN_V2(SpecialSlicePluginDynamicCreator);
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -178,13 +178,12 @@ class DynamicPluginTensorRT : public nvinfer1::IPluginV2DynamicExt {
std::string name_space_;
std::string plugin_base_;
};
#endif
template <typename T>
class TrtPluginRegistrarV2 {
public:
TrtPluginRegistrarV2() {
static auto func_ptr = getPluginRegistry();
static auto func_ptr = GetPluginRegistry();
if (func_ptr != nullptr) {
func_ptr->registerCreator(creator, "");
}
......@@ -198,6 +197,8 @@ class TrtPluginRegistrarV2 {
static paddle::inference::tensorrt::plugin::TrtPluginRegistrarV2<name> \
plugin_registrar_##name {}
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
......
......@@ -123,17 +123,17 @@ void trt_ernie(bool with_fp16, std::vector<float> result) {
{"read_file_0.tmp_0", min_shape},
{"read_file_0.tmp_1", min_shape},
{"read_file_0.tmp_2", min_shape},
{"matmul_0.tmp_0", {batch, min_seq_len, min_seq_len}}};
{"read_file_0.tmp_4", min_shape}};
std::map<std::string, std::vector<int>> max_input_shape = {
{"read_file_0.tmp_0", max_shape},
{"read_file_0.tmp_1", max_shape},
{"read_file_0.tmp_2", max_shape},
{"matmul_0.tmp_0", {batch, max_seq_len, max_seq_len}}};
{"read_file_0.tmp_4", max_shape}};
std::map<std::string, std::vector<int>> opt_input_shape = {
{"read_file_0.tmp_0", opt_shape},
{"read_file_0.tmp_1", opt_shape},
{"read_file_0.tmp_2", opt_shape},
{"matmul_0.tmp_0", {batch, opt_seq_len, opt_seq_len}}};
{"read_file_0.tmp_4", opt_shape}};
auto precision = AnalysisConfig::Precision::kFloat32;
if (with_fp16) {
......
......@@ -86,16 +86,16 @@ void run(const AnalysisConfig& config, std::vector<float>* out_data) {
void trt_ernie(bool with_fp16, std::vector<float> result) {
AnalysisConfig config;
std::string model_dir = FLAGS_infer_model;
SetConfig(&config, model_dir, true /* use_gpu */);
SetConfig(&config, model_dir, true);
config.SwitchUseFeedFetchOps(false);
int batch = 1;
int batch = 32;
int min_seq_len = 1;
int max_seq_len = 128;
int opt_seq_len = 128;
std::vector<int> min_shape = {batch, min_seq_len, 1};
std::vector<int> min_shape = {1, min_seq_len, 1};
std::vector<int> max_shape = {batch, max_seq_len, 1};
std::vector<int> opt_shape = {batch, opt_seq_len, 1};
// Set the input's min, max, opt shape
......@@ -103,17 +103,17 @@ void trt_ernie(bool with_fp16, std::vector<float> result) {
{"read_file_0.tmp_0", min_shape},
{"read_file_0.tmp_1", min_shape},
{"read_file_0.tmp_2", min_shape},
{"matmul_0.tmp_0", {batch, min_seq_len, min_seq_len}}};
{"read_file_0.tmp_4", min_shape}};
std::map<std::string, std::vector<int>> max_input_shape = {
{"read_file_0.tmp_0", max_shape},
{"read_file_0.tmp_1", max_shape},
{"read_file_0.tmp_2", max_shape},
{"matmul_0.tmp_0", {batch, max_seq_len, max_seq_len}}};
{"read_file_0.tmp_4", max_shape}};
std::map<std::string, std::vector<int>> opt_input_shape = {
{"read_file_0.tmp_0", opt_shape},
{"read_file_0.tmp_1", opt_shape},
{"read_file_0.tmp_2", opt_shape},
{"matmul_0.tmp_0", {batch, opt_seq_len, opt_seq_len}}};
{"read_file_0.tmp_4", opt_shape}};
auto precision = AnalysisConfig::Precision::kFloat32;
if (with_fp16) {
......@@ -124,6 +124,7 @@ void trt_ernie(bool with_fp16, std::vector<float> result) {
opt_input_shape);
std::vector<float> out_data;
run(config, &out_data);
for (size_t i = 0; i < out_data.size(); i++) {
EXPECT_NEAR(result[i], out_data[i], 1e-6);
}
......
......@@ -263,9 +263,11 @@ class TensorRTEngineOp : public framework::OperatorBase {
buffers[bind_index] = static_cast<void *>(t.data<float>());
} else if (type == framework::proto::VarType::INT64) {
buffers[bind_index] = static_cast<void *>(t.data<int64_t>());
} else if (type == framework::proto::VarType::INT32) {
buffers[bind_index] = static_cast<void *>(t.data<int32_t>());
} else {
PADDLE_THROW(platform::errors::Fatal(
"The TRT Engine OP only support float and int64_t input."));
"The TRT Engine OP only support float/int32_t/int64_t input."));
}
}
......
......@@ -22,19 +22,15 @@ namespace dynload {
std::once_flag tensorrt_dso_flag;
void* tensorrt_dso_handle;
std::once_flag tensorrt_plugin_dso_flag;
void* tensorrt_plugin_dso_handle;
#define DEFINE_WRAP(__name) DynLoad__##__name __name
TENSORRT_RAND_ROUTINE_EACH(DEFINE_WRAP);
TENSORRT_PLUGIN_RAND_ROUTINE_EACH(DEFINE_WRAP);
void* GetTensorRtHandle() {
#if defined(__APPLE__) || defined(__OSX__)
std::string dso_name = "libnvinfer.dylib";
#elif defined(_WIN32)
std::string dso_name = "nvinfer.dll";
#else
std::string dso_name = "libnvinfer.so";
#endif
void* GetDsoHandle(const std::string& dso_name) {
#if !defined(_WIN32)
int dynload_flags = RTLD_LAZY | RTLD_LOCAL;
#else
......@@ -65,10 +61,31 @@ void* GetTensorRtHandle() {
#endif // !_WIN32
std::cerr << string::Sprintf(error_msg, dso_name, errorno);
}
return dso_handle;
}
void* GetTensorRtHandle() {
#if defined(__APPLE__) || defined(__OSX__)
std::string dso_name = "libnvinfer.dylib";
#elif defined(_WIN32)
std::string dso_name = "nvinfer.dll";
#else
std::string dso_name = "libnvinfer.so";
#endif
return GetDsoHandle(dso_name);
}
void* GetTensorRtPluginHandle() {
#if defined(__APPLE__) || defined(__OSX__)
std::string dso_name = "libnvinfer_plugin.dylib";
#elif defined(_WIN32)
std::string dso_name = "nvinfer_plugin.dll";
#else
std::string dso_name = "libnvinfer_plugin.so";
#endif
return GetDsoHandle(dso_name);
}
} // namespace dynload
} // namespace platform
} // namespace paddle
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <NvInfer.h>
#include <NvInferPlugin.h>
#if !defined(_WIN32)
#include <dlfcn.h>
#endif
......@@ -32,11 +33,14 @@ void* GetTensorRtHandle();
extern std::once_flag tensorrt_dso_flag;
extern void* tensorrt_dso_handle;
void* GetTensorRtPluginHandle();
extern std::once_flag tensorrt_plugin_dso_flag;
extern void* tensorrt_plugin_dso_handle;
#define DECLARE_DYNAMIC_LOAD_TENSORRT_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> DECLARE_TYPE(__name, args...) { \
using tensorrt_func = decltype(&::__name); \
std::call_once(tensorrt_dso_flag, []() { \
tensorrt_dso_handle = paddle::platform::dynload::GetTensorRtHandle(); \
}); \
......@@ -44,17 +48,50 @@ extern void* tensorrt_dso_handle;
if (p_##__name == nullptr) { \
return nullptr; \
} \
using tensorrt_func = decltype(&::__name); \
return reinterpret_cast<tensorrt_func>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#define DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> DECLARE_TYPE(__name, args...) { \
std::call_once(tensorrt_plugin_dso_flag, []() { \
tensorrt_plugin_dso_handle = \
paddle::platform::dynload::GetTensorRtPluginHandle(); \
}); \
static void* p_##__name = dlsym(tensorrt_plugin_dso_handle, #__name); \
PADDLE_ENFORCE_NOT_NULL(p_##__name, \
platform::errors::Unavailable( \
"Load tensorrt plugin %s failed", #__name)); \
using tensorrt_plugin_func = decltype(&::__name); \
return reinterpret_cast<tensorrt_plugin_func>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#ifdef NV_TENSORRT_MAJOR
#if (NV_TENSORRT_MAJOR >= 6)
#define TENSORRT_RAND_ROUTINE_EACH(__macro) \
__macro(createInferBuilder_INTERNAL); \
__macro(createInferRuntime_INTERNAL); \
__macro(getPluginRegistry);
#else
#define TENSORRT_RAND_ROUTINE_EACH(__macro) \
__macro(createInferBuilder_INTERNAL); \
__macro(createInferRuntime_INTERNAL);
#endif
#define TENSORRT_PLUGIN_RAND_ROUTINE_EACH(__macro) \
__macro(initLibNvInferPlugins);
TENSORRT_RAND_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_TENSORRT_WRAP)
TENSORRT_PLUGIN_RAND_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP)
#endif // end of NV_TENSORRT_MAJOR
} // namespace dynload
} // namespace platform
......
......@@ -423,6 +423,8 @@ void BindAnalysisConfig(py::module *m) {
py::arg("optim_input_shape") =
std::map<std::string, std::vector<int>>({}),
py::arg("disable_trt_plugin_fp16") = false)
.def("enable_tensorrt_oss", &AnalysisConfig::EnableTensorRtOSS)
.def("tensorrt_oss_enabled", &AnalysisConfig::tensorrt_oss_enabled)
.def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled)
.def("enable_lite_engine", &AnalysisConfig::EnableLiteEngine,
py::arg("zero_copy") = false,
......
......@@ -20,6 +20,7 @@ import random
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PaddleTensor
......@@ -152,6 +153,8 @@ class InferencePassTest(unittest.TestCase):
format(device))
for out, analysis_output in zip(outs, analysis_outputs):
out = np.array(out)
self.assertTrue(
np.allclose(
np.array(out), analysis_output, atol=atol),
......@@ -169,6 +172,8 @@ class InferencePassTest(unittest.TestCase):
"The number of outputs is different between GPU and TensorRT. ")
for out, tensorrt_output in zip(outs, tensorrt_outputs):
out = np.array(out)
self.assertTrue(
np.allclose(
np.array(out), tensorrt_output, atol=atol),
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import AnalysisConfig
class TensorRTMatMulDims2Test(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(name="data", shape=[24, 24], dtype="float32")
matmul_out = fluid.layers.matmul(
x=data,
y=data,
transpose_x=self.transpose_x,
transpose_y=self.transpose_y,
alpha=self.alpha)
out = fluid.layers.batch_norm(matmul_out, is_test=True)
self.feeds = {"data": np.ones([24, 24]).astype("float32"), }
self.enable_trt = True
self.trt_parameters = TensorRTMatMulDims2Test.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False)
self.fetch_list = [out]
def set_params(self):
self.transpose_x = True
self.transpose_y = True
self.alpha = 2.0
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu)
class TensorRTMatMulTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 6, 24, 24], dtype="float32")
matmul_out = fluid.layers.matmul(
x=data,
y=data,
transpose_x=self.transpose_x,
transpose_y=self.transpose_y,
alpha=self.alpha)
out = fluid.layers.batch_norm(matmul_out, is_test=True)
self.feeds = {"data": np.ones([1, 6, 24, 24]).astype("float32"), }
self.enable_trt = True
self.trt_parameters = TensorRTMatMulTest.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False)
self.fetch_list = [out]
def set_params(self):
self.transpose_x = False
self.transpose_y = False
self.alpha = 1.0
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu)
class TensorRTMatMulTransposeXTest(TensorRTMatMulTest):
def set_params(self):
self.transpose_x = True
self.transpose_y = False
self.alpha = 1.0
class TensorRTMatMulTransposeYTest(TensorRTMatMulTest):
def set_params(self):
self.transpose_x = False
self.transpose_y = True
self.alpha = 1.0
class TensorRTMatMulScaleTest(TensorRTMatMulTest):
def set_params(self):
self.transpose_x = False
self.transpose_y = False
self.alpha = 2.0
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册