expand_v2_mkldnn_op.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/convert_utils.h"
J
jakpiase 已提交
16
#include "paddle/fluid/operators/expand_v2_op.h"
17 18 19 20 21
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace {

using paddle::framework::Tensor;
22
using phi::vectorize;
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
using paddle::framework::GradVarName;
using paddle::framework::ExecutionContext;
using paddle::platform::MKLDNNDeviceContext;

template <typename T>
class ExpandMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    auto x_vec_dims = vectorize(x->dims());
J
jakpiase 已提交
42 43 44 45 46

    auto out_new_dims = paddle::operators::get_expand_shape(ctx);
    for (size_t i = 0; i < out_new_dims.size(); ++i) {
      out_new_dims[i] = out_new_dims[i] > 0 ? out_new_dims[i] : x_vec_dims[i];
    }
47

48
    dnnl::memory::desc x_mem_desc = x->mem_desc();
J
jakpiase 已提交
49
    if (x_vec_dims.size() != out_new_dims.size()) {
50 51
      x_mem_desc = GetExtendedMemoryDescriptor(x_mem_desc, x_vec_dims,
                                               out_new_dims.size());
52 53
    }

54
    out->Resize(phi::make_ddim(out_new_dims));
55
    paddle::platform::BroadcastDataMKLDNNHandler<T> handler(
56
        dnnl::algorithm::binary_add, onednn_engine, ctx.GetPlace(), out, x,
57
        0.0f, 1.0f, x_mem_desc);
58 59

    auto src_memory_p = handler.AcquireSrcMemory(x);
60
    auto dst_memory_p = handler.AcquireDstMemory(out);  // acquires zeroed mem
61 62 63 64 65 66 67 68 69 70 71
    auto binary_p = handler.AcquireForwardPrimitive();

    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC_0, *dst_memory_p},
        {DNNL_ARG_SRC_1, *src_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    binary_p->execute(astream, args);
    astream.wait();

72
    out->set_mem_desc(dst_memory_p->get_desc());
73 74 75
  }

 private:
76 77 78
  dnnl::memory::desc GetExtendedMemoryDescriptor(
      const dnnl::memory::desc& x_mem_desc,
      const std::vector<int64_t>& x_vec_dims, int new_size) const {
79
    std::vector<int64_t> new_dims(new_size, 1);
80 81
    std::copy(x_vec_dims.begin(), x_vec_dims.end(),
              new_dims.begin() + new_size - x_vec_dims.size());
82

83
    return x_mem_desc.reshape(new_dims);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  }
};

template <typename T>
class ExpandGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));

    auto dx_vec_dims = vectorize(dx->dims());
    auto dout_vec_dims = vectorize(dout->dims());

    if (dx_vec_dims.size() != dout_vec_dims.size()) {
      dx_vec_dims.insert(dx_vec_dims.begin(),
                         dout_vec_dims.size() - dx_vec_dims.size(), 1);
    }

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    if (dout_vec_dims == dx_vec_dims) {
111 112
      dnnl::memory::data_type dout_type = paddle::framework::ToMKLDNNDataType(
          paddle::framework::TransToProtoVarType(dout->dtype()));
113
      paddle::platform::ReorderMKLDNNHandler reorder_handler(
114 115
          dout_vec_dims, paddle::framework::TransToProtoVarType(dout->dtype()),
          dout_type, onednn_engine);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

      auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
          dout->format(), paddle::platform::to_void_cast(dout->data<T>()));

      auto reorder_dst_memory_p =
          reorder_handler.AcquireDstMemory(dx, dout->format(), ctx.GetPlace());

      auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                      reorder_dst_memory_p);

      reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
      astream.wait();

      dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
      dx->set_format(
          paddle::platform::GetMKLDNNFormat(reorder_dst_memory_p->get_desc()));
    } else {
      paddle::platform::ReductionMKLDNNHandler<T> handler(
134 135
          dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
          ctx.GetPlace(), dout, dx, dx_vec_dims);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

      auto src_memory_p = handler.AcquireSrcMemory(dout);
      auto dst_memory_p = handler.AcquireDstMemory(dx);

      std::unordered_map<int, dnnl::memory> reduction_args = {
          {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};

      auto reduction_p = handler.AcquireForwardPrimitive();

      reduction_p->execute(astream, reduction_args);
      astream.wait();
      dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
      dx->set_format(paddle::platform::GetMKLDNNFormat(
          dst_memory_p->get_desc().reshape(vectorize<int64_t>(dx->dims()))));
    }
  }
};
}  // anonymous namespace

REGISTER_OP_KERNEL(expand_v2, MKLDNN, paddle::platform::CPUPlace,
                   ExpandMKLDNNKernel<float>,
                   ExpandMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(expand_v2_grad, MKLDNN, paddle::platform::CPUPlace,
                   ExpandGradMKLDNNKernel<float>,
                   ExpandGradMKLDNNKernel<paddle::platform::bfloat16>);