clip.py 11.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

F
fengjiayi 已提交
15 16
import copy

Y
Yu Yang 已提交
17 18
import functools
import layers
F
fengjiayi 已提交
19
import framework
F
fengjiayi 已提交
20
from . import core
Y
Yu Yang 已提交
21

F
fengjiayi 已提交
22
__all__ = [
23
    'ErrorClipByValue',
F
fengjiayi 已提交
24 25 26
    'GradientClipByValue',
    'GradientClipByNorm',
    'GradientClipByGlobalNorm',
F
fengjiayi 已提交
27
]
Y
Yu Yang 已提交
28 29


F
fengjiayi 已提交
30
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
31 32 33
    def __str__(self):
        raise NotImplementedError()

F
fengjiayi 已提交
34
    def append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
35 36 37 38
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    """
    Clips tensor values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

            var = fluid.framework.Variable(..., error_clip=ErrorClipByValue(max=5.0), ...)
    """

F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
67 68 69
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

F
fengjiayi 已提交
70
    def append_clip_op(self, block, grad_name):
71 72 73 74 75 76
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
        clip_op_desc.set_attr("min", self.min)
        clip_op_desc.set_attr("max", self.max)
F
fengjiayi 已提交
77 78 79 80 81 82 83 84 85 86


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
    for grad_n in filter(lambda n: grad_to_var.has_key(n),
                         op_desc.output_arg_names()):
        fwd_var = block.var_recursive(grad_to_var[grad_n])
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
87 88 89 90 91
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
92 93
        if error_clip is not None:
            error_clip.append_clip_op(block, grad_n)
F
fengjiayi 已提交
94 95


Y
Yu Yang 已提交
96
class BaseGradientClipAttr(object):
F
fengjiayi 已提交
97 98 99
    def __str__(self):
        raise NotImplementedError()

F
fengjiayi 已提交
100
    def process_context(self, context, param, grad):
Y
Yu Yang 已提交
101 102 103 104 105 106 107
        raise NotImplementedError()

    def create_operators(self, param, grad):
        raise NotImplementedError()


class NullGradientClipAttr(BaseGradientClipAttr):
F
fengjiayi 已提交
108 109 110
    def __str__(self):
        return "Null"

F
fengjiayi 已提交
111
    def process_context(self, context, param, grad):
Y
Yu Yang 已提交
112 113 114 115 116 117 118
        pass

    def create_operators(self, param, grad):
        return param, grad


class GradientClipByValue(BaseGradientClipAttr):
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """
    Clips gradient values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

            w_param_attrs = ParamAttr(name=None,
              initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
              learning_rate=1.0,
              regularizer=L1Decay(1.0),
              trainable=True,
              clip=GradientClipByValue(-1.0, 1.0))
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
153 154 155
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

F
fengjiayi 已提交
156
    def process_context(self, context, param, grad):
Y
Yu Yang 已提交
157 158 159 160 161 162 163
        pass

    def create_operators(self, param, grad):
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


F
fengjiayi 已提交
164
class GradientClipByNorm(BaseGradientClipAttr):
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    """
    Clips tensor values to a maximum L2-norm.

    This operator limits the L2 norm of the input :math:`X` within :math:`max\_norm`.
    If the L2 norm of :math:`X` is less than or equal to :math:`max\_norm`, :math:`Out`
    will be the same as :math:`X`. If the L2 norm of :math:`X` is greater than
    :math:`max\_norm`, :math:`X` will be linearly scaled to make the L2 norm of
    :math:`Out` equal to :math:`max\_norm`, as shown in the following formula:

    .. math::

        Out = \\frac{max\_norm * X}{norm(X)},

    where :math:`norm(X)` represents the L2 norm of :math:`X`.

    Args:
        clip_norm (float): The maximum norm value

    Examples:
        .. code-block:: python

            w_param_attrs = ParamAttr(name=None,
              initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
              learning_rate=1.0,
              regularizer=L1Decay(1.0),
              trainable=True,
              clip=GradientClipByNorm(clip_norm=2.0))
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)

    """

F
fengjiayi 已提交
196 197 198
    def __init__(self, clip_norm):
        self.clip_norm = clip_norm

F
fengjiayi 已提交
199 200 201
    def __str__(self):
        return "ByNorm, clip_norm=%f" % self.clip_norm

F
fengjiayi 已提交
202
    def process_context(self, context, param, grad):
F
fengjiayi 已提交
203 204 205 206 207 208 209
        pass

    def create_operators(self, param, grad):
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


F
fengjiayi 已提交
210
class GradientClipByGlobalNorm(BaseGradientClipAttr):
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    """
    Clips values of multiple tensors by the ratio of the sum of their norms.

    Given a list of tensors t_list, and a clipping ratio clip_norm, this
    operation returns a list of clipped tensors list_clipped and the global
    norm (global_norm) of all tensors in t_list.

    To perform the clipping, the values :math:`t\_list[i]` are set to:

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    If :math:`clip\_norm > global\_norm` then the entries in t_list remain as they are,
    otherwise they're all shrunk by the global ratio.

    Args:
        clip_norm (float): The maximum norm value
        group_name (str, optional): The group name for this clip.

    Examples:
        .. code-block:: python

            p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

            with fluid.program_guard(main_program=prog_clip):
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)

    """

F
update  
fengjiayi 已提交
249 250 251 252 253 254
    def __init__(self, clip_norm, group_name="default_group"):
        if not isinstance(group_name, basestring):
            raise TypeError("'group_name' must be a basestring.")

        self.clip_norm = clip_norm
        self.group_name = group_name
255

F
fengjiayi 已提交
256 257 258 259
    def __str__(self):
        return "ByGlobalNorm, group_name=%s, clip_norm=%f" % (self.group_name,
                                                              self.clip_norm)

F
fengjiayi 已提交
260
    def process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
261 262 263 264 265 266 267 268 269 270
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
                shape=[1], dtype="float32", value=self.clip_norm)
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
271

F
update  
fengjiayi 已提交
272 273
        local_norm_var = layers.reduce_sum(input=layers.pow(x=grad, factor=2.0))
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
274

F
update  
fengjiayi 已提交
275
        self.context = context
276

F
update  
fengjiayi 已提交
277 278 279 280 281 282 283 284
    def create_operators(self, param, grad):
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
            layers.sqrt(x=group_norm_var, out=group_norm_var)
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
285
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
286 287 288
                    x=clip_var, y=group_norm_var))
            assert group_scale_var.shape == (1L, )
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
289

F
update  
fengjiayi 已提交
290 291
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
292
        return param, new_grad
F
fengjiayi 已提交
293 294


F
fengjiayi 已提交
295
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
296
    """
297 298 299 300 301 302 303 304 305 306
    To specify parameters that require gradient clip.

    Args:
        clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr,
                which describes the type and detailed attributes of required gradient clip.
        param_list(list(Variable)): Parameters that require gradient clip.
                It can be a list of parameter or a list of parameter's name.
                When it's None, all parameters in the program will be included.
        program(Program): The program where parameters are.
                Will be the default main program when assigned with None.
F
fengjiayi 已提交
307
    """
F
fengjiayi 已提交
308 309 310 311
    if not isinstance(clip, BaseGradientClipAttr):
        raise TypeError(
            "'clip' should be an instance of BaseGradientClipAttr's derived class"
        )
F
fengjiayi 已提交
312 313 314 315 316 317 318 319 320 321 322 323
    if program is None:
        program = framework.default_main_program()
    if param_list is None:
        param_list = program.block(0).all_parameters()
    if all(isinstance(elem, basestring) for elem in param_list):
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
324
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
325 326


Y
Yu Yang 已提交
327 328 329
def append_gradient_clip_ops(param_grad):
    context = dict()
    for p, g in param_grad:
Y
yuyang18 已提交
330 331 332 333 334 335 336 337
        with p.block.program.optimized_guard(p):
            clip_attr = getattr(p, 'gradient_clip_attr', NullGradientClipAttr())
            if clip_attr is None:
                clip_attr = NullGradientClipAttr()
            if not isinstance(clip_attr, BaseGradientClipAttr):
                raise TypeError(
                    "clip attribute should be an instance of BaseGradientClipAttr"
                )
Y
Yu Yang 已提交
338

Y
yuyang18 已提交
339 340 341 342 343 344
            clip_attr.process_context(context=context, param=p, grad=g)

    res = []
    for p, g in param_grad:
        with p.block.program.optimized_guard(p):
            res.append(clip_attr.create_operators(param=p, grad=g))
Y
Yu Yang 已提交
345

Y
yuyang18 已提交
346
    return res
Y
Yu Yang 已提交
347 348 349


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
350 351
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm