elementwise_op_function.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
17
#include "paddle/framework/op_registry.h"
18
#include "paddle/framework/operator.h"
C
chengduoZH 已提交
19
#include "paddle/platform/transform.h"
20

C
chengduoZH 已提交
21 22 23 24
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

Q
QI JUN 已提交
62
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
63
class RowwiseTransformIterator;
Q
QI JUN 已提交
64
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
65
class MidWiseTransformIterator;
C
chengduoZH 已提交
66 67

template <typename T>
Q
QI JUN 已提交
68
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
69
 public:
C
chengduoZH 已提交
70 71
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
72
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
73
    ++i_;
C
chengduoZH 已提交
74 75 76
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
77 78 79
    return *this;
  }

Q
QI JUN 已提交
80 81
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
82
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
83 84
  }

Q
QI JUN 已提交
85 86
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
87
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
88 89 90 91
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
92
 private:
C
chengduoZH 已提交
93 94
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
95
  int64_t n_;
C
chengduoZH 已提交
96 97 98
};

template <typename T>
Q
QI JUN 已提交
99
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
100
 public:
C
chengduoZH 已提交
101 102 103
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
104
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
105 106 107 108 109 110
    ++j_;
    i_ = j_ / post_;
    if (UNLIKELY(i_ == n_)) {
      j_ = 0;
      i_ = 0;
    }
C
chengduoZH 已提交
111 112 113
    return *this;
  }

Q
QI JUN 已提交
114 115
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
116
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
117 118
  }

Q
QI JUN 已提交
119 120
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
121
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
122 123 124 125
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
126
 private:
C
chengduoZH 已提交
127 128
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
129 130
  int64_t j_;
  int64_t n_;
C
chengduoZH 已提交
131 132 133
  int post_;
};

C
chengduoZH 已提交
134 135
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
136
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
137
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
138
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
139 140
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
141
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
142
      super_t;
C
chengduoZH 已提交
143
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
144 145 146 147 148 149
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
150
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
151 152 153 154 155
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
156
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
157
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
158
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
159 160
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
161
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
162
      super_t;
C
chengduoZH 已提交
163
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
164 165 166 167 168 169 170
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
171
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
172 173 174 175 176
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

Q
QI JUN 已提交
177
template <typename Functor, typename T, typename DeviceContext>
C
chengduoZH 已提交
178 179
class TransformFunctor {
 public:
C
chengduoZH 已提交
180
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
181
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
182 183 184 185 186 187 188 189
      : x_(x->data<T>()),
        y_(y->data<T>()),
        z_(z->mutable_data<T>(ctx.GetPlace())),
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
190
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
191
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
192 193 194
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
195 196 197
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
198 199 200
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
201 202 203
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
204 205
  }

C
chengduoZH 已提交
206
 private:
C
chengduoZH 已提交
207 208 209 210
  const T* x_;
  const T* y_;
  T* z_;
  int64_t nx_;
Q
QI JUN 已提交
211
  const DeviceContext& ctx_;
C
chengduoZH 已提交
212 213 214
  Functor func_;
};

215 216
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
217
    template <typename DeviceContext, typename T>                              \
218 219 220 221 222 223
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
224 225 226
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
227
    }                                                                          \
Q
QI JUN 已提交
228
    template <typename DeviceContext, typename T>                              \
229 230 231 232 233 234 235 236 237 238
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
239 240 241
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
242
    }                                                                          \
Q
QI JUN 已提交
243
    template <typename DeviceContext, typename T>                              \
244 245 246 247 248 249 250 251 252 253 254
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
255 256 257
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
258 259 260
    }                                                                          \
  }

Q
QI JUN 已提交
261
template <class functor, typename DeviceContext, typename T>
262 263 264 265 266 267 268 269 270 271 272
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
273
                    "Rank of first input must >= rank of second input.");
274

Q
qijun 已提交
275
  if (x_dims == y_dims) {
276
    functor f;
Q
QI JUN 已提交
277
    f.template Run<DeviceContext, T>(x, y, z, ctx);
278 279 280 281 282 283 284 285 286 287 288 289
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
Q
QI JUN 已提交
290
    f.template RunBroadCast<DeviceContext, T>(x, y, z, ctx, pre, n);
291 292 293
    return;
  } else {
    functor f;
Q
QI JUN 已提交
294
    f.template RunBroadCast2<DeviceContext, T>(x, y, z, ctx, pre, n, post);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Q
QI JUN 已提交
311 312 313
template <typename DeviceContext, typename T, typename functor,
          typename functor1, typename broadcastfunctor,
          typename broadcast2functor>
314 315 316 317 318 319 320 321
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Input<Tensor>("Out");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

Q
QI JUN 已提交
322
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
}  // namespace operators
}  // namespace paddle