elementwise_op_function.h 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
17
#include "paddle/framework/op_registry.h"
18
#include "paddle/framework/operator.h"
C
chengduoZH 已提交
19
#include "paddle/platform/transform.h"
20

C
chengduoZH 已提交
21 22 23 24
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

C
chengduoZH 已提交
62 63 64 65 66 67 68 69 70 71 72
template <typename T, typename Place>
struct RowwiseTransformIterator;
template <typename T, typename Place>
struct MidWiseTransformIterator;

template <typename T>
struct RowwiseTransformIterator<T, platform::CPUPlace> {
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, platform::CPUPlace>& operator++() {
    ++i_;
C
chengduoZH 已提交
73
    i_ %= n_;
C
chengduoZH 已提交
74 75 76 77 78
    return *this;
  }

  bool operator==(
      const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
79
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
80 81 82 83
  }

  bool operator!=(
      const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
84
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
85 86 87 88 89 90
  }

  const T& operator*() { return ptr_[i_]; }

  const T* ptr_;
  int i_;
C
chengduoZH 已提交
91
  int64_t n_;
C
chengduoZH 已提交
92 93 94 95 96 97 98 99
};

template <typename T>
struct MidWiseTransformIterator<T, platform::CPUPlace> {
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, platform::CPUPlace>& operator++() {
C
chengduoZH 已提交
100
    i_ = (++j_ / post_) % n_;
C
chengduoZH 已提交
101 102 103 104 105
    return *this;
  }

  bool operator==(
      const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
106
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
107 108 109 110
  }

  bool operator!=(
      const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
111
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
112 113 114 115 116 117
  }

  const T& operator*() { return ptr_[i_]; }

  const T* ptr_;
  int i_;
C
chengduoZH 已提交
118 119
  int64_t j_;
  int64_t n_;
C
chengduoZH 已提交
120 121 122
  int post_;
};

C
chengduoZH 已提交
123 124 125 126 127 128 129 130 131
#ifdef __NVCC__
template <typename T>
struct RowwiseTransformIterator<T, platform::GPUPlace>
    : public thrust::iterator_adaptor<
          RowwiseTransformIterator<T, platform::GPUPlace>, const T*> {
 public:
  typedef thrust::iterator_adaptor<
      RowwiseTransformIterator<T, platform::GPUPlace>, const T*>
      super_t;
C
chengduoZH 已提交
132
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
133 134 135 136 137 138
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
139
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
140 141 142 143 144 145 146 147 148 149 150 151
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
struct MidWiseTransformIterator<T, platform::GPUPlace>
    : public thrust::iterator_adaptor<
          MidWiseTransformIterator<T, platform::GPUPlace>, const T*> {
 public:
  typedef thrust::iterator_adaptor<
      MidWiseTransformIterator<T, platform::GPUPlace>, const T*>
      super_t;
C
chengduoZH 已提交
152
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
153 154 155 156 157 158 159
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
160
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
161 162 163 164 165
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

C
chengduoZH 已提交
166 167 168
template <typename Functor, typename T, typename Place>
struct TransformFunctor {
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
C
chengduoZH 已提交
169
                   framework::Tensor* z, const platform::DeviceContext& ctx,
C
chengduoZH 已提交
170 171 172 173 174 175 176 177 178 179
                   Functor func)
      : x_(x->data<T>()),
        y_(y->data<T>()),
        z_(z->mutable_data<T>(ctx.GetPlace())),
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
180
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
181 182 183 184
  }

  inline void RunRowWise(int n, int pre) const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
185 186
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, Place>(y_, n), z_,
          func_);
C
chengduoZH 已提交
187 188 189 190
  }

  inline void RunMidWise(int n, int pre, int post) const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
191 192
    trans(ctx_, x_, x_ + nx_, MidWiseTransformIterator<T, Place>(y_, n, post),
          z_, func_);
C
chengduoZH 已提交
193 194 195 196 197 198
  }

  const T* x_;
  const T* y_;
  T* z_;
  int64_t nx_;
C
chengduoZH 已提交
199
  const platform::DeviceContext& ctx_;
C
chengduoZH 已提交
200 201 202
  Functor func_;
};

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
    template <typename Place, typename T>                                      \
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e);            \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
  }

template <class functor, typename Place, typename T>
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
255
                    "Rank of first input must >= rank of second input.");
256

Q
qijun 已提交
257
  if (x_dims == y_dims) {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    functor f;
    f.template Run<Place, T>(x, y, z, ctx);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
    f.template RunBroadCast<Place, T>(x, y, z, ctx, pre, n);
    return;
  } else {
    functor f;
    f.template RunBroadCast2<Place, T>(x, y, z, ctx, pre, n, post);
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

template <typename Place, typename T, typename functor, typename functor1,
          typename broadcastfunctor, typename broadcast2functor>
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Input<Tensor>("Out");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

  auto place = ctx.GetEigenDevice<Place>();

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
}  // namespace operators
}  // namespace paddle