elementwise_mul_mkldnn_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18 19 20

#include "paddle/fluid/platform/mkldnn_helper.h"

21
#include "paddle/fluid/operators/math/jit_kernel.h"
P
peizhilin 已提交
22 23 24
#if defined(_WIN32) && defined(_WINSOCKAPI_)
#define _WINSOCK2API_ /* Prevent inclusion of winsock2.h */
#endif
25 26
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
27

28 29 30 31
namespace paddle {
namespace operators {

using framework::DataLayout;
32
using mkldnn::memory;
33
using platform::StringToMKLDNNFormat;
34 35

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
36 37
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
38
    auto format_as_string = ctx.Attr<std::string>(attribute);
39
    auto format = StringToMKLDNNFormat(&format_as_string);
40 41 42 43 44 45
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

46 47 48
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
49
                         const mkldnn::engine& engine, bool isFourDim) {
50 51 52 53 54 55
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
56 57 58 59 60 61
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
62 63 64 65
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
82
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
83

84 85
    UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
    UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
86

87 88
    Xbyak::util::Cpu cpu;
    const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
89 90 91
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
92 93
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
        is_avx512_enabled) {
94 95
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
96

97 98 99 100 101
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
102

103 104 105 106
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
107

108 109
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
110

111 112
        constexpr int simd_width = 16;
        int C = c / simd_width;
113

114 115 116
        const auto& multiply =
            math::jitkernel::KernelPool::Instance()
                .template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
117

118
#pragma omp parallel for collapse(2)
119 120 121
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
122
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
123

124 125
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
126
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
127

128
            multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
129 130 131
          }
        }
      }
132 133 134

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
135 136
    } else {
      // Fallback to naive version:
137
      const bool are_inputs_in_same_format = x->format() == y->format();
138
      const bool is_x_nchw = x->format() == memory::format::nchw;
139
      const bool is_x_nc = x->format() == memory::format::nc;
140
      const bool is_y_nchw = y->format() == memory::format::nchw;
141
      const bool is_y_nc = y->format() == memory::format::nc;
142
      if (!are_inputs_in_same_format) {
143 144 145
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
146
        if (!(is_x_nchw || is_x_nc))
147
          ReorderInput<T>(const_cast<Tensor*>(x), ctx.GetPlace(), mkldnn_engine,
148 149
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
150
          ReorderInput<T>(const_cast<Tensor*>(y), ctx.GetPlace(), mkldnn_engine,
151
                          y->dims().size() == 4);
152 153
      }

154 155 156 157 158 159 160 161
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
178 179 180 181 182 183 184 185 186 187 188 189
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)