group_norm_op.cu 14.6 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
16
#include "cub/cub.cuh"
17 18 19 20 21
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#endif

D
Dun 已提交
22
#include "paddle/fluid/operators/group_norm_op.h"
23
#include "paddle/fluid/platform/cuda_device_function.h"
24
#include "paddle/fluid/platform/cuda_primitives.h"
D
Dun 已提交
25 26 27 28

namespace paddle {
namespace operators {

29
using DataLayout = framework::DataLayout;
30 31
enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 };

P
peizhilin 已提交
32 33 34
#define CHECK_CASE(i, flags, kernel_name, ...)                              \
  if (i == flags) {                                                         \
    kernel_name<T, i><<<grid, threads, 0, dev_ctx.stream()>>>(__VA_ARGS__); \
35 36 37 38 39 40
  }

// 0 for no scale, no bias
// 1 for has scale, no bias
// 2 for no scale, has bias
// 3 for has scale, has bias
P
peizhilin 已提交
41 42 43 44 45
#define UNROLL_ALL_CASES(flags, kernel_name, ...) \
  CHECK_CASE(0, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(1, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(2, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(3, flags, kernel_name, __VA_ARGS__)
46 47 48

template <typename T>
__device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
49
#ifdef PADDLE_WITH_CUDA
50
  typedef cub::WarpReduce<T> WarpReduce;
51 52 53
#else
  typedef hipcub::WarpReduce<T> WarpReduce;
#endif
54 55
  typename WarpReduce::TempStorage temp_storage;
  value = WarpReduce(temp_storage).Sum(value);
56
#ifdef PADDLE_WITH_CUDA
57
  if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
58 59 60
#else
  if (hipcub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
#endif
61 62
}

D
Dun 已提交
63
template <typename T>
64
__global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W,
D
Dun 已提交
65
                                              int imsize, int groups,
66 67
                                              int group_size, T* mean, T* var,
                                              const DataLayout data_layout) {
D
Dun 已提交
68 69 70
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
71
  int H = imsize / W;
D
Dun 已提交
72 73 74 75 76
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = 0, x_var = 0;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
77 78 79 80 81 82 83 84
    T val;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid];
    } else {
      int hid = imid / W;
      int wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
85 86 87 88 89
    x_mean += val;
    x_var += val * val;
  }
  x_mean /= number * imsize;
  x_var /= number * imsize;
90 91
  CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean);
  CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var);
D
Dun 已提交
92 93
}

94
template <typename T, int flags>
D
Dun 已提交
95 96
__global__ void GroupNormForward(const T* x, const T* mean, const T* var,
                                 const T* scale, const T* bias, int N, int C,
97 98 99
                                 int W, int imsize, int groups, int group_size,
                                 T epsilon, T* y, T* real_var,
                                 const DataLayout data_layout) {
D
Dun 已提交
100 101 102
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
103
  int H = imsize / W;
D
Dun 已提交
104 105 106 107 108 109 110 111
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = mean[bid * groups + gid];
  T x_var = var[bid * groups + gid];
  x_var = x_var - x_mean * x_mean;
  T var_inv = 1.0 / sqrt(x_var + epsilon);
  if (cid == 0 && threadIdx.x == 0) real_var[bid * groups + gid] = x_var;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
112 113 114 115 116 117 118 119 120
    T val;
    int hid, wid;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid];
    } else {
      hid = imid / W;
      wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
121
    val = (val - x_mean) * var_inv;
122 123
    if (flags & kHasScale) val *= scale[gid * group_size + cid];
    if (flags & kHasBias) val += bias[gid * group_size + cid];
124 125 126 127 128
    if (data_layout == DataLayout::kNCHW) {
      y[(bid * C + ccid) * imsize + imid] = val;
    } else {
      y[(bid * H + hid) * W * C + wid * C + ccid] = val;
    }
D
Dun 已提交
129 130 131 132 133 134 135 136
  }
}

template <typename T>
class GroupNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
137 138 139
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
140 141 142 143 144 145 146 147 148 149 150
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
151 152 153 154 155 156 157
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());

    set_zero(dev_ctx, mean, static_cast<T>(0));
    set_zero(dev_ctx, &temp_var, static_cast<T>(0));

    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();
    auto* temp_var_data = temp_var.data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

181 182 183
    int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
                                                   : x_dims[1] * x_dims[2]);

184
    int block_size = std::min(1024, imsize);
D
Dun 已提交
185 186 187
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
    GroupNormForwardGetMeanAndVar<T><<<grid, threads, 0, dev_ctx.stream()>>>(
188 189
        x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data,
        temp_var_data, data_layout);
190 191 192
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data,
193 194
                     scale_data, bias_data, x_dims[0], C, W, imsize, groups,
                     group_size, epsilon, y_data, var_data, data_layout);
D
Dun 已提交
195 196 197
  }
};

198
template <typename T, int flags>
199 200 201 202
__global__ void GroupNormBackwardGetMeanAndVar(
    const T* x, const T* scale, const T* bias, const T* d_y, int N, int C,
    int W, int imsize, int groups, int group_size, T epsilon, T* d_mean,
    T* d_var, T* d_scale, T* d_bias, const DataLayout data_layout) {
D
Dun 已提交
203 204 205
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
206
  int H = imsize / W;
D
Dun 已提交
207 208 209
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
210 211 212 213
  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
214 215 216
  T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0;

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
217 218 219 220 221 222 223 224 225 226
    T val, dval;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid] - x_bias;
      dval = d_y[(bid * C + ccid) * imsize + imid];
    } else {
      int hid = imid / W;
      int wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias;
      dval = d_y[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
227

228 229 230 231 232 233
    d_var_data += val * dval;
    d_mean_data += dval * x_scale;

    val = val * x_scale_inv;
    d_bias_data += dval;
    d_scale_data += val * dval;
D
Dun 已提交
234
  }
235 236 237 238
  CudaAtomicAddWithWarp(&(d_mean[bid * groups + gid]), d_mean_data);
  CudaAtomicAddWithWarp(&(d_var[bid * groups + gid]), d_var_data);
  if (flags & kHasScale) CudaAtomicAddWithWarp(&(d_scale[ccid]), d_scale_data);
  if (flags & kHasBias) CudaAtomicAddWithWarp(&(d_bias[ccid]), d_bias_data);
D
Dun 已提交
239 240
}

241 242 243
template <typename T, int flags>
__global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale,
                                  const T* bias, const T* var, const T* d_mean,
244 245 246 247
                                  const T* d_var, int N, int C, int W,
                                  int imsize, int groups, int group_size,
                                  T epsilon, T* d_x,
                                  const DataLayout data_layout) {
D
Dun 已提交
248 249 250
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
251
  int H = imsize / W;
D
Dun 已提交
252 253 254 255 256
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_var = var[bid * groups + gid];
  T d_x_mean = d_mean[bid * groups + gid];
257 258 259 260 261 262 263 264 265
  T d_x_var = d_var[bid * groups + gid];

  T x_var_inv = 1.0 / sqrt(x_var + epsilon);
  T number_inv = 1.0 / (number * imsize);

  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
266 267

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    if (data_layout == DataLayout::kNCHW) {
      T tmp = x[(bid * C + ccid) * imsize + imid];
      T v_y = (tmp - x_bias) * x_scale_inv;
      T dly = d_y[(bid * C + ccid) * imsize + imid];
      d_x[(bid * C + ccid) * imsize + imid] =
          x_var_inv *
          (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
    } else {
      int hid = imid / W;
      int wid = imid % W;
      T tmp = x[(bid * H + hid) * W * C + wid * C + ccid];
      T v_y = (tmp - x_bias) * x_scale_inv;
      T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid];
      d_x[(bid * H + hid) * W * C + wid * C + ccid] =
          x_var_inv *
          (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
    }
D
Dun 已提交
285 286 287 288 289 290 291 292
  }
}

template <typename T>
class GroupNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
293 294 295
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
296
    const float epsilon = ctx.Attr<float>("epsilon");
297
    auto* x = ctx.Input<Tensor>("Y");
D
Dun 已提交
298 299
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
300
    auto* bias = ctx.Input<Tensor>("Bias");
D
Dun 已提交
301 302 303 304 305 306 307 308 309
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
310 311 312 313 314 315 316
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
317

318
    d_x->mutable_data<T>(ctx.GetPlace());
D
Dun 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
    set_zero(dev_ctx, &temp_var, static_cast<T>(0));
    T* temp_var_data = temp_var.data<T>();

    Tensor temp_mean;
    temp_mean.mutable_data<T>(var->dims(), ctx.GetPlace());
    set_zero(dev_ctx, &temp_mean, static_cast<T>(0));
    T* temp_mean_data = temp_mean.data<T>();

    auto* x_data = x->data<T>();
333 334
    T* d_x_data = nullptr;
    if (d_x) d_x_data = d_x->data<T>();
D
Dun 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    auto* y_data = d_y->data<T>();
    auto* var_data = var->data<T>();
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_scale, static_cast<T>(0));
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_bias, static_cast<T>(0));
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
352 353
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();
D
Dun 已提交
354

355 356 357
    int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
                                                   : x_dims[1] * x_dims[2]);

358
    int block_size = std::min(1024, imsize);
D
Dun 已提交
359 360
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
361 362 363
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, x_data, scale_data,
364
                     bias_data, y_data, x_dims[0], C, W, imsize, groups,
365
                     group_size, epsilon, temp_mean_data, temp_var_data,
366
                     d_scale_data, d_bias_data, data_layout);
367 368 369
    if (d_x_data != nullptr) {
      UNROLL_ALL_CASES(flags, GroupNormBackward, x_data, y_data, scale_data,
                       bias_data, var_data, temp_mean_data, temp_var_data,
370 371
                       x_dims[0], C, W, imsize, groups, group_size, epsilon,
                       d_x_data, data_layout);
372
    }
D
Dun 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    group_norm,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, double>);