fleet_wrapper.cc 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
30
#include <algorithm>
X
xujiaqi01 已提交
31
#include <utility>
32
#include "paddle/fluid/framework/channel.h"
33
#include "paddle/fluid/framework/data_feed.h"
34
#include "paddle/fluid/framework/io/fs.h"
35
#include "paddle/fluid/framework/op_registry.h"
36
#include "paddle/fluid/framework/scope.h"
37
#include "paddle/fluid/platform/timer.h"
38 39 40 41 42 43

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
44 45 46 47 48
bool FleetWrapper::is_initialized_ = false;

#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
49

50 51 52 53 54 55 56 57
void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

58 59 60
void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
61
    VLOG(3) << "Going to init server";
62 63 64 65 66
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
67
    VLOG(3) << "Server can be initialized only once";
68 69 70 71 72 73 74 75 76
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
77
    VLOG(3) << "Going to init worker";
78 79 80 81 82 83 84
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
85
    VLOG(3) << "Worker can be initialized only once";
86 87 88 89 90 91
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
92
  VLOG(3) << "Going to stop server";
93 94 95 96
  pslib_ptr_->stop_server();
#endif
}

97 98 99 100 101 102 103
void FleetWrapper::FinalizeWorker() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to finalize worker";
  pslib_ptr_->finalize_worker();
#endif
}

104 105
uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
106
  VLOG(3) << "Going to run server";
107 108 109 110 111 112
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

113 114 115 116 117 118 119 120 121 122
uint64_t FleetWrapper::RunServer(const std::string& ip, uint32_t port) {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to run server with ip " << ip << " port " << port;
  auto ret = pslib_ptr_->run_server(ip, port);
  return ret;
#else
  return 0;
#endif
}

123 124 125
void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
126
  VLOG(3) << "Going to gather server ips";
127 128 129 130 131
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

D
dongdaxiang 已提交
132
void FleetWrapper::GatherClients(const std::vector<uint64_t>& host_sign_list) {
X
xjqbest 已提交
133 134 135
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to gather client ips";
  size_t len = host_sign_list.size();
D
dongdaxiang 已提交
136
  pslib_ptr_->gather_clients(const_cast<uint64_t*>(host_sign_list.data()), len);
X
xjqbest 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150
#endif
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to get client info";
  return pslib_ptr_->get_client_info();
#endif
  return std::vector<uint64_t>();
}

void FleetWrapper::CreateClient2ClientConnection() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to create client2client connection";
151 152 153
  pslib_ptr_->create_client2client_connection(client2client_request_timeout_ms_,
                                              client2client_connect_timeout_ms_,
                                              client2client_max_retry_);
X
xjqbest 已提交
154 155 156
#endif
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
void FleetWrapper::PullSparseToLocal(const uint64_t table_id,
                                     int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  size_t fea_keys_size = local_tables_.size();
  if (fea_keys_size == 0) {
    return;
  }
  local_table_shard_num_ = fea_keys_size;
  platform::Timer timeline;
  std::vector<std::thread> threads(fea_keys_size);
  auto ptl_func = [this, &table_id](int i) {
    size_t key_size = this->local_tables_[i].size();
    std::vector<uint64_t> keys;
    keys.reserve(key_size);
    std::vector<float*> pull_result_ptr;
    pull_result_ptr.reserve(key_size);

    for (auto& kv : this->local_tables_[i]) {
      keys.emplace_back(kv.first);
      pull_result_ptr.emplace_back(kv.second.data());
    }
    auto tt = pslib_ptr_->_worker_ptr->pull_sparse(
        pull_result_ptr.data(), table_id, keys.data(), key_size);
    tt.wait();
    auto status = tt.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(sleep_seconds_before_fail_exit_);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << pull_result_ptr.size();
    }
  };
  timeline.Start();
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  local_pull_pool_.reset(new ::ThreadPool(pull_local_thread_num_));
  timeline.Pause();
#endif
}

void FleetWrapper::PullSparseVarsFromLocal(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  size_t key_length = fea_keys->size();
  int local_step = key_length / pull_local_thread_num_;
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(key_length / local_step + 1);
  for (size_t i = 0; i < key_length; i += local_step) {
    size_t end = i + local_step < key_length ? i + local_step : key_length;
    auto pull_local_task = [this, i, end, &fea_values, &fea_keys,
                            &fea_value_dim] {
      for (size_t j = i; j < end; j++) {
        std::memcpy((*fea_values)[j].data(),
                    local_tables_[(*fea_keys)[j] % local_table_shard_num_]
                                 [(*fea_keys)[j]]
                                     .data(),
                    fea_value_dim * sizeof(float));
      }
    };
    task_futures.emplace_back(
        local_pull_pool_->enqueue(std::move(pull_local_task)));
  }
  for (auto& tf : task_futures) {
    tf.wait();
  }
#endif
}

void FleetWrapper::ClearLocalTable() {
#ifdef PADDLE_WITH_PSLIB
  for (auto& t : local_tables_) {
    t.clear();
  }
#endif
}

std::future<int32_t> FleetWrapper::PullSparseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  return pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
#endif
  return std::future<int32_t>();
}

302 303 304
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
305 306
    std::vector<std::vector<float>>* fea_values, int fea_value_dim,
    const std::vector<std::string>& var_emb_names) {
307 308 309 310 311 312
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
313 314
  for (size_t var_index = 0; var_index < var_names.size(); ++var_index) {
    const std::string& name = var_names[var_index];
315
    Variable* var = scope.FindVar(name);
316 317 318
    if (var == nullptr) {
      continue;
    }
319
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
320
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
321
    int64_t* ids = tensor->data<int64_t>();
322
    size_t len = tensor->numel();
323 324 325 326 327 328 329 330

    // skip slots which do not have embedding
    const std::string& emb_name = var_emb_names[var_index];
    Variable* emb_var = scope.FindVar(emb_name);
    if (emb_var == nullptr) {
      continue;
    }

331 332 333 334 335 336 337
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
D
dongdaxiang 已提交
338 339 340 341 342 343 344 345 346 347 348
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  auto status = pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
  pull_sparse_status.push_back(std::move(status));
349 350 351 352 353
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
354
      sleep(sleep_seconds_before_fail_exit_);
355 356 357 358 359 360
      exit(-1);
    }
  }
#endif
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
void FleetWrapper::PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                                          uint64_t padding_id,
                                          platform::Place place,
                                          std::vector<const LoDTensor*>* inputs,
                                          std::vector<LoDTensor*>* outputs) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<uint64_t> fea_keys;
  std::vector<float*> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor* output = nullptr;
  float* output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
        memcpy(output_data + output_len, init_value.data(),
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
  auto status = pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys.data(), fea_keys.size());
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
#else
  for (size_t index = 0; index < inputs->size(); ++index) {
    auto* tensor = inputs->at(index);
    size_t len = tensor->numel();
    std::vector<float> init_data(fea_dim, 0);
    for (size_t i = 0; i < len; ++i) {
      memcpy(outputs->at(index)->mutable_data<float>(place), init_data.data(),
             fea_dim);
    }
  }
#endif
}

421 422 423 424 425
void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
426 427
  auto& regions = _regions[tid];
  regions.clear();
428 429 430
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
431 432 433
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
434
    regions[i] = std::move(reg);
435 436 437 438 439 440 441 442 443 444 445
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
446 447
  auto& regions = _regions[tid];
  regions.clear();
448 449 450 451 452 453 454 455 456 457 458 459 460 461
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

462
void FleetWrapper::PushDenseParamSync(
D
dongdaxiang 已提交
463
    const Scope& scope, const uint64_t table_id,
464 465 466 467 468 469
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  auto place = platform::CPUPlace();
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
X
xjqbest 已提交
470
    CHECK(var != nullptr) << "var[" << t << "] not found";
471
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
472
    float* g = tensor->mutable_data<float>(place);
473 474 475
    paddle::ps::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
476 477 478 479 480
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
481 482 483
#endif
}

D
dongdaxiang 已提交
484 485 486 487
void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

488 489 490
void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
491 492
    std::vector<::std::future<int32_t>>* push_sparse_status,
    float scale_datanorm, int batch_size) {
493 494 495 496 497 498 499
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
500 501 502 503 504 505 506 507 508 509 510 511 512 513
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }
514 515 516
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
517

518 519
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
520 521 522
  if (push_sparse_status) {
    push_sparse_status->push_back(std::move(status));
  }
523 524 525 526 527 528 529 530 531
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
532
    std::vector<::std::future<int32_t>>* push_sparse_status,
533
    const int batch_size, const bool use_cvm, const bool dump_slot,
534
    std::vector<uint64_t>* sparse_push_keys, const bool no_cvm) {
535 536
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
T
Thunderbrook 已提交
537
  int slot_offset = 0;
538
  int grad_dim = emb_dim;
T
Thunderbrook 已提交
539 540
  int show_index = 0;
  int click_index = 1;
541 542 543 544
  if (use_cvm) {
    offset = 0;
    grad_dim = emb_dim - 2;
  }
545 546 547 548
  if (no_cvm) {
    offset = 0;
    grad_dim = emb_dim;
  }
T
Thunderbrook 已提交
549 550 551 552 553
  if (dump_slot) {
    slot_offset = 1;
    show_index = 1;
    click_index = 2;
  }
554
  CHECK_GE(grad_dim, 0);
555

556 557
  sparse_push_keys->clear();
  sparse_push_keys->reserve(fea_keys.size() + 1);
558 559
  push_values->resize(fea_keys.size() + 1);
  for (auto& t : *push_values) {
T
Thunderbrook 已提交
560
    t.resize(emb_dim + offset + slot_offset);
561
  }
562
  uint64_t fea_idx = 0u;
563 564
  for (size_t i = 0;
       i < sparse_key_names.size() && i < sparse_grad_names.size(); ++i) {
565
    Variable* var = scope.FindVar(sparse_key_names[i]);
566 567 568
    if (var == nullptr) {
      continue;
    }
569
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
570 571
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
572 573
      exit(-1);
    }
574
    size_t len = tensor->numel();
575
    int64_t* ids = tensor->data<int64_t>();
T
Thunderbrook 已提交
576 577 578 579
    int slot = 0;
    if (dump_slot) {
      slot = boost::lexical_cast<int>(sparse_key_names[i]);
    }
580
    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
581 582 583
    if (g_var == nullptr) {
      continue;
    }
584 585 586 587
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
588
    }
589 590
    float* g = g_tensor->data<float>();

591 592 593 594 595 596 597
    if (scale_sparse_gradient_with_batch_size_ && grad_dim > 0) {
      int dim = emb_dim + offset;
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / dim, dim);
      g_mat.rightCols(grad_dim) *= batch_size;
    }
598 599 600 601 602
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
603
      sparse_push_keys->push_back(ids[id_idx]);
604
      CHECK(fea_idx < (*push_values).size());
T
Thunderbrook 已提交
605

606
      if (use_cvm || no_cvm) {
T
Thunderbrook 已提交
607
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
608 609
               sizeof(float) * emb_dim);
      } else {
610
        CHECK(fea_idx < fea_labels.size());
T
Thunderbrook 已提交
611
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
612
               sizeof(float) * emb_dim);
T
Thunderbrook 已提交
613 614 615 616 617 618
        (*push_values)[fea_idx][show_index] = 1.0f;
        (*push_values)[fea_idx][click_index] =
            static_cast<float>(fea_labels[fea_idx]);
      }
      if (dump_slot) {
        (*push_values)[fea_idx][0] = static_cast<float>(slot);
619
      }
620 621 622 623
      g += emb_dim;
      fea_idx++;
    }
  }
624 625 626 627 628 629 630 631 632 633 634 635 636
  // slots whose embedding has been stop gradient or
  // not involved in forward-backward
  uint64_t no_grad_fea_num = 0u;
  for (size_t i = sparse_grad_names.size(); i < sparse_key_names.size(); ++i) {
    Variable* var = scope.FindVar(sparse_key_names[i]);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
    }
637
    size_t len = tensor->numel();
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        continue;
      }
      ++no_grad_fea_num;
    }
  }
  CHECK(fea_idx + no_grad_fea_num == fea_keys.size())
      << "fea_idx: " << fea_idx << " no_grad_fea_num: " << no_grad_fea_num
      << " features size: " << fea_keys.size();
  CHECK(fea_idx == sparse_push_keys->size());
  if (fea_idx == 0) {
    return;
  }
653
  std::vector<float*> push_g_vec;
654
  for (auto i = 0u; i < sparse_push_keys->size(); ++i) {
655 656 657
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
658 659
      table_id, sparse_push_keys->data(), (const float**)push_g_vec.data(),
      sparse_push_keys->size());
660 661 662 663
  push_sparse_status->push_back(std::move(status));
#endif
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
void FleetWrapper::PushSparseFromTensorWithLabelAsync(
    const Scope& scope, const uint64_t table_id, int fea_dim,
    uint64_t padding_id, bool scale_sparse, const std::string& accesor,
    const std::string& click_name, platform::Place place,
    const std::vector<std::string>& input_names,
    std::vector<const LoDTensor*>* inputs,
    std::vector<const LoDTensor*>* outputs) {
#ifdef PADDLE_WITH_PSLIB
  int show_index = 0;
  int click_index = 1;
  // these default values can not be used, it must be set.
  bool dump_slot = false;
  int slot_offset = 0;
  int grad_dim = 0;
  // don't worry, user do not have to care about all these flags
  if (accesor == "DownpourCtrAccessor") {
    dump_slot = true;
    slot_offset = 1;
    grad_dim = fea_dim - 2;
    show_index = 1;
    click_index = 2;
  } else if (accesor == "DownpourFeatureValueAccessor") {
    dump_slot = false;
    slot_offset = 0;
    grad_dim = fea_dim - 2;
  } else if (accesor == "DownpourSparseValueAccessor") {
    dump_slot = false;
    slot_offset = 0;
    grad_dim = fea_dim;
  }
  CHECK(grad_dim >= 0);  // NOLINT

  int batch_size = -1;
  for (auto* input : *inputs) {
    int cur_batch_size =
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
      batch_size = cur_batch_size;
    } else {
      CHECK(batch_size == cur_batch_size);  // NOLINT
    }
  }
  CHECK(batch_size > 0);  // NOLINT

  std::vector<float> g;
  for (const framework::LoDTensor* g_tensor : *outputs) {
    size_t origin = g.size();
    size_t add = g_tensor->numel();
    g.resize(origin + add);
    memcpy(g.data() + origin, g_tensor->data<float>(), add);
  }
  if (scale_sparse && grad_dim > 0) {
    size_t dim = static_cast<size_t>(grad_dim);
    Eigen::Map<
        Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
        g_mat(g.data(), g.size() / dim, dim);
    g_mat.rightCols(grad_dim) *= batch_size;
  }

  std::vector<float> fea_labels;
  fea_labels.reserve(MAX_FEASIGN_NUM / 100);
  framework::Variable* var = scope.FindVar(click_name);
  size_t global_idx = 0;
  if (click_name != "") {
    CHECK(var != nullptr);  // NOLINT
    framework::LoDTensor* label_tensor =
        var->GetMutable<framework::LoDTensor>();
    CHECK(label_tensor != nullptr);  // NOLINT
    int64_t* label_ptr = label_tensor->data<int64_t>();

    for (auto* tensor : *inputs) {
      const int64_t* ids = tensor->data<int64_t>();
      size_t fea_idx = 0;
      for (size_t lod_idx = 1; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
        size_t cur =
            GetAbsoluteSum(tensor->lod()[0][lod_idx - 1],
                           tensor->lod()[0][lod_idx], 0, tensor->lod());
        for (size_t i = 0; i < cur; ++i, ++fea_idx) {
          if (static_cast<uint64_t>(ids[fea_idx]) == padding_id) {
            continue;
          }
          fea_labels.push_back(static_cast<float>(label_ptr[lod_idx - 1]));
          ++global_idx;
        }
      }
    }
  }
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (static_cast<uint64_t>(ids[i]) == padding_id) {
        continue;
      }
      push_keys.emplace_back(ids[i]);
      push_values.emplace_back(fea_dim + slot_offset);
      float* data = push_values.back().data();
      if (!var) {
        memcpy(data + slot_offset, g.data() + output_len,
               sizeof(float) * fea_dim);
      } else {
        memcpy(data + slot_offset, g.data() + output_len,
               sizeof(float) * grad_dim);
        data[show_index] = 1.0f;
        data[click_index] = static_cast<float>(fea_labels.at(input_idx));
      }
      if (dump_slot) {
        int slot = boost::lexical_cast<int>(input_names[index]);
        data[0] = static_cast<float>(slot);
      }
      ++input_idx;
    }
  }

  CHECK(output_len == g.size());  // NOLINT
  if (click_name != "") {
    CHECK(input_idx == global_idx);  // NOLINT
  }

  std::vector<float*> push_g_vec(input_idx, nullptr);
  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
      table_id, push_keys.data(), (const float**)push_g_vec.data(),
      push_keys.size());
#endif
}

800 801 802 803
void FleetWrapper::LoadFromPaddleModel(Scope& scope, const uint64_t table_id,
                                       std::vector<std::string> var_list,
                                       std::string model_path,
                                       std::string model_proto_file,
804
                                       std::vector<std::string> table_var_list,
805
                                       bool load_combine) {
806
#ifdef PADDLE_WITH_PSLIB
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
  // load ProgramDesc from model file
  auto read_proto_func = [](const std::string& filename) -> ProgramDesc {
    std::string contents;
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
    fin.seekg(0, std::ios::end);
    contents.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&contents[0], contents.size());
    fin.close();
    ProgramDesc program_desc(contents);
    return program_desc;
  };
  const ProgramDesc old_program = read_proto_func(model_proto_file);
  Scope* old_scope = new Scope();
  auto& old_block = old_program.Block(0);
  auto place = platform::CPUPlace();
  std::vector<std::string> old_param_list;

  for (auto& t : var_list) {
    VarDesc* old_var_desc = old_block.FindVar(t);
    if (old_var_desc == nullptr) {
      continue;
    }
    // init variable in scope
    Variable* old_var = old_scope->Var(old_var_desc->Name());
    InitializeVariable(old_var, old_var_desc->GetType());
    old_param_list.push_back(t);
    if (load_combine) {
      continue;
    }
    // load variable from model
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path + "/" + old_var_desc->Name()});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load", {}, {{"Out", {old_var_desc->Name()}}}, attrs);
    load_op->Run(*old_scope, place);
  }

  if (load_combine) {
    std::sort(old_param_list.begin(), old_param_list.end());
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load_combine", {}, {{"Out", old_param_list}}, attrs);
    load_op->Run(*old_scope, place);
  }

  for (auto& t : old_param_list) {
    Variable* old_var = old_scope->Var(t);
    // old model data, here we assume data type is float
    LoDTensor* old_tensor = old_var->GetMutable<LoDTensor>();
    float* old_data = old_tensor->data<float>();
    // new model data, here we assume data type is float
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* data = tensor->data<float>();
    // copy from old data to new data
    if (old_tensor->numel() > tensor->numel()) {
      memcpy(data, old_data, tensor->numel() * sizeof(float));
    } else {
      memcpy(data, old_data, old_tensor->numel() * sizeof(float));
    }
  }
  delete old_scope;
872 873
  PushDenseParamSync(scope, table_id, table_var_list);
#endif
874 875
}

876 877 878 879 880 881
void FleetWrapper::LoadModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->load(path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
882
    sleep(sleep_seconds_before_fail_exit_);
883 884 885 886 887 888 889
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret =
      pslib_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

905 906 907 908 909 910 911
void FleetWrapper::SaveModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save(path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
912
    sleep(sleep_seconds_before_fail_exit_);
913 914 915 916 917 918 919
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::SaveModel does nothing when no pslib";
#endif
}

920 921 922 923 924 925 926 927 928 929 930 931 932
void FleetWrapper::PrintTableStat(const uint64_t table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->print_table_stat(table_id);
  ret.wait();
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "print table stat failed";
  }
#else
  VLOG(0) << "FleetWrapper::PrintTableStat does nothing when no pslib";
#endif
}

933
double FleetWrapper::GetCacheThreshold(int table_id) {
934 935 936 937
#ifdef PADDLE_WITH_PSLIB
  double cache_threshold = 0.0;
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
938
  ret = pslib_ptr_->_worker_ptr->get_cache_threshold(table_id, cache_threshold);
939 940 941
  ret.wait();
  if (cache_threshold < 0) {
    LOG(ERROR) << "get cache threshold failed";
942
    sleep(sleep_seconds_before_fail_exit_);
943 944 945 946 947 948 949 950 951 952 953 954 955
    exit(-1);
  }
  return cache_threshold;
#else
  VLOG(0) << "FleetWrapper::GetCacheThreshold does nothing when no pslib";
  return 0.0;
#endif
}

void FleetWrapper::CacheShuffle(int table_id, const std::string& path,
                                const int mode, const double cache_threshold) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->cache_shuffle(
956
      table_id, path, std::to_string(mode), std::to_string(cache_threshold));
957 958 959 960
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "cache shuffle failed";
961
    sleep(sleep_seconds_before_fail_exit_);
962 963 964 965 966 967 968 969 970 971
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::CacheShuffle does nothing when no pslib";
#endif
}

int32_t FleetWrapper::SaveCache(int table_id, const std::string& path,
                                const int mode) {
#ifdef PADDLE_WITH_PSLIB
972 973
  auto ret =
      pslib_ptr_->_worker_ptr->save_cache(table_id, path, std::to_string(mode));
974 975 976 977
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "table save cache failed";
978
    sleep(sleep_seconds_before_fail_exit_);
979 980 981 982 983 984 985 986 987
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::SaveCache does nothing when no pslib";
  return -1;
#endif
}

988 989 990 991 992 993 994 995 996
void FleetWrapper::ShrinkSparseTable(int table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->shrink(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

997 998 999 1000 1001 1002 1003 1004 1005
void FleetWrapper::ClearModel() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->clear();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ClearModel does nothing when no pslib";
#endif
}

X
xujiaqi01 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014
void FleetWrapper::ClearOneTable(const uint64_t table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->clear(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ClearOneTable does nothing when no pslib";
#endif
}

1015 1016
void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
1017
                                    float decay, int emb_dim) {
1018 1019 1020 1021 1022 1023
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
1024
      VLOG(0) << "prepare shrink dense batch_sum";
1025 1026
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
      size_name.replace(size_name.find("batch_sum"), size_name.length(),
                        "batch_size");
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    LOG(FATAL) << "push shrink dense param failed, status[" << status << "]";
1057
    sleep(sleep_seconds_before_fail_exit_);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

void FleetWrapper::ClientFlush() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ServerFlush does nothing when no pslib";
#endif
}

1074 1075
int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
1076
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
1077 1078 1079
  VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  VLOG(3) << "pslib_ptr_=" << pslib_ptr_;
  VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr;
1080 1081
  return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type,
                                                                    handler);
1082 1083 1084 1085
#else
  VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler"
          << " does nothing when no pslib";
#endif
X
xujiaqi01 已提交
1086
  return 0;
1087 1088
}

1089 1090
std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
1091
#ifdef PADDLE_WITH_PSLIB
1092 1093
  return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id,
                                                         msg);
1094 1095 1096 1097
#else
  VLOG(0) << "FleetWrapper::SendClientToClientMsg"
          << " does nothing when no pslib";
#endif
1098
  return std::future<int32_t>();
X
xujiaqi01 已提交
1099 1100
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;
#ifdef PADDLE_WITH_PSLIB
    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
#endif
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

X
xujiaqi01 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
int32_t FleetWrapper::CopyTable(const uint64_t src_table_id,
                                const uint64_t dest_table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->copy_table(src_table_id, dest_table_id);
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "copy table failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::CopyTable does nothing when no pslib";
  return 0;
#endif
}

int32_t FleetWrapper::CopyTableByFeasign(
    const uint64_t src_table_id, const uint64_t dest_table_id,
    const std::vector<uint64_t>& feasign_list) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->copy_table_by_feasign(
      src_table_id, dest_table_id, feasign_list.data(), feasign_list.size());
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "copy table by feasign failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::CopyTableByFeasign does nothing when no pslib";
  return 0;
#endif
}
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
size_t FleetWrapper::GetAbsoluteSum(size_t start, size_t end, size_t level,
                                    const framework::LoD& lod) {
  if (level >= lod.size() - 1) {
    return end - start;
  }
  size_t ret = 0;
  for (size_t i = start; i < end - 1; ++i) {
    size_t pos1 = lod[level][i];
    size_t pos2 = lod[level][i + 1];
    ret += GetAbsoluteSum(pos1, pos2, level + 1, lod);
  }
  return ret;
}

1171 1172
}  // end namespace framework
}  // end namespace paddle