ipu_compiler.cc 35.5 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

A
Allen Guo 已提交
15
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
J
jianghaicheng 已提交
16

A
Allen Guo 已提交
17 18 19 20
#include <popart/adam.hpp>
#include <popart/adaptive.hpp>
#include <popart/optimizer.hpp>
#include <popart/sgd.hpp>
A
Allen Guo 已提交
21

J
jianghaicheng 已提交
22
#include "paddle/fluid/framework/ir/graph_helper.h"
23 24
#include "paddle/fluid/platform/device/ipu/ipu_names.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"
A
Allen Guo 已提交
25
#include "paddle/fluid/platform/device/ipu/ipu_utils.h"
J
jianghaicheng 已提交
26 27 28 29 30

namespace paddle {
namespace platform {
namespace ipu {

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
namespace {

struct CustomOpAttrVisitor : public boost::static_visitor<void> {
  CustomOpAttrVisitor(std::map<std::string, popart::any>* attr,
                      const std::string& attr_name)
      : attrs_(attr), attr_name_(attr_name) {}

  mutable std::map<std::string, popart::any>* attrs_;
  std::string attr_name_;

  void operator()(int v) const { attrs_->emplace(attr_name_, v); }
  void operator()(float v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::string& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<int>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<float>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<std::string>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(bool v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<bool>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(BlockDesc* desc) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type when extracting "
        "custom operator attributes."));
  }
  void operator()(const std::vector<BlockDesc*>& v) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type when extracting  "
        "custom operator attributes."));
  }
  void operator()(int64_t v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<int64_t>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<double>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(boost::blank) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `boost::blank` type when extracting "
        "custom operator attributes."));
  }
};

struct ConstantOpAttrVisitor : public boost::static_visitor<void> {
  ConstantOpAttrVisitor(framework::LoDTensor* tensor, VarType::Type dtype)
      : tensor_(tensor), dtype_(dtype) {}

  framework::LoDTensor* tensor_;
  VarType::Type dtype_;

  void operator()(const std::vector<int>& vec) const {
    framework::TensorFromVector<int>(vec, tensor_);
  }
  void operator()(const std::vector<float>& vec) const {
    if (dtype_ == VarType::FP16) {
      std::vector<float16> vec_fp16;
96 97 98
      std::transform(vec.begin(),
                     vec.end(),
                     std::back_inserter(vec_fp16),
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                     [](float f) -> float16 { return float16(f); });
      framework::TensorFromVector<float16>(vec_fp16, tensor_);
    } else {
      framework::TensorFromVector<float>(vec, tensor_);
    }
  }
  void operator()(const std::vector<bool>& vec) const {
    framework::TensorFromVector<bool>(vec, tensor_);
  }
  void operator()(const std::vector<int64_t>& vec) const {
    framework::TensorFromVector<int64_t>(vec, tensor_);
  }
  void operator()(const std::vector<double>& vec) const {
    framework::TensorFromVector<double>(vec, tensor_);
  }
#define RAISE_ERROR \
  PADDLE_THROW(     \
      platform::errors::InvalidArgument("Constant value must be a vector"))
  void operator()(int v) const { RAISE_ERROR; }
  void operator()(float v) const { RAISE_ERROR; }
  void operator()(const std::string& v) const { RAISE_ERROR; }
  void operator()(const std::vector<std::string>& v) const { RAISE_ERROR; }
  void operator()(bool v) const { RAISE_ERROR; }
  void operator()(BlockDesc* desc) const { RAISE_ERROR; }
  void operator()(const std::vector<BlockDesc*>& v) const { RAISE_ERROR; }
  void operator()(int64_t v) const { RAISE_ERROR; }
  void operator()(boost::blank) const { RAISE_ERROR; }
#undef RAISE_ERROR
};

A
Allen Guo 已提交
129 130
popart::AdamMode AdamModeFromStr(const std::string& str,
                                 const bool& use_no_bias_optimizer) {
A
Allen Guo 已提交
131
  if (str == "adam") {
A
Allen Guo 已提交
132 133 134 135
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Adam;
    else
      return popart::AdamMode::AdamNoBias;
A
Allen Guo 已提交
136 137 138
  } else if (str == "adamax") {
    return popart::AdamMode::AdaMax;
  } else if (str == "lamb") {
A
Allen Guo 已提交
139 140 141 142
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Lamb;
    else
      return popart::AdamMode::LambNoBias;
A
Allen Guo 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdamMode: %s, AdamMode must be one of these values: adam, "
        "adamax or lamb",
        str));
  }
}

popart::AdaptiveMode AdaptiveModeFromStr(const std::string& str) {
  if (str == "adadelta") {
    return popart::AdaptiveMode::AdaDelta;
  } else if (str == "adagrad") {
    return popart::AdaptiveMode::AdaGrad;
  } else if (str == "rmsprop") {
    return popart::AdaptiveMode::RMSProp;
  } else if (str == "centered_rmsprop") {
    return popart::AdaptiveMode::CenteredRMSProp;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdaptiveMode: %s, AdaptiveMode must be one of these values: "
        "adadelta, adagrad, rmsprop or centered_rmsprop",
        str));
  }
}

popart::WeightDecayMode WeightDecayModeFromStr(const std::string& str) {
  if (str == "decay") {
    return popart::WeightDecayMode::Decay;
  } else if (str == "l2_regularization") {
    return popart::WeightDecayMode::L2Regularization;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown WeightDecayMode: %s, WeightDecayMode must be decay or "
        "l2_regularization",
        str));
  }
}

A
Allen Guo 已提交
181 182 183 184 185 186 187 188 189 190 191
popart::DataType DataTypeFromStr(const std::string& str) {
  if (str == "FLOAT") {
    return popart::DataType::FLOAT;
  } else if (str == "FLOAT16") {
    return popart::DataType::FLOAT16;
  } else {
    PADDLE_THROW(
        platform::errors::Unimplemented("Unsupported DataType: %s", str));
  }
}

J
jianghaicheng 已提交
192
template <typename T>
A
Allen Guo 已提交
193
T GetAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
194 195 196 197 198 199 200 201
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

template <typename T>
A
Allen Guo 已提交
202
nonstd::optional<T> GetOptAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
203 204 205 206 207 208 209
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

A
Allen Guo 已提交
210 211 212 213 214 215 216 217 218 219
template <typename TI, typename TO>
TO GetCastSigAttrAllowNull(std::string attr, OpDesc* op_desc) {
  if (op_desc->HasAttr(attr)) {
    auto x = BOOST_GET_CONST(TI, op_desc->GetAttr(attr));
    return static_cast<TO>(x);
  } else {
    return {};
  }
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
// Helper for adding namescope info
struct NameScopeHelper {
  NameScopeHelper(const OpDesc* op, popart::Builder* builder);

  ~NameScopeHelper() {
    if (pushed_) {
      builder_->popNameScope();
    }
  }

  bool pushed_ = false;
  popart::Builder* builder_;
};

NameScopeHelper::NameScopeHelper(const OpDesc* op, popart::Builder* builder)
    : builder_(builder) {
  auto op_namescope = BOOST_GET_CONST(std::string, op->GetAttr(sOpNamescope));
  if (op_namescope.empty() || op_namescope == "/") {
    return;
  }
  op_namescope.pop_back();
  op_namescope.erase(op_namescope.begin());
  builder->pushNameScope(op_namescope);
  pushed_ = true;
}

}  // namespace

A
Allen Guo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260
GraphHelper::GraphHelper(const Graph* g) {
  graph = g;
  sorted_ops = framework::ir::TopologySortOperations(*g);
  for (auto* node : g->Nodes()) {
    nodes_id_map[node->id()] = node;
    if (node->IsVar()) {
      vars_name_map[node->Name()] = node;
      sorted_vars_id.push_back(node->id());
    }
  }
  std::sort(sorted_vars_id.begin(), sorted_vars_id.end());
}

A
Allen Guo 已提交
261 262 263 264 265
Compiler::Compiler() { RegisterOpFunc(); }

Compiler::~Compiler() {
  builder_.reset();
  resources_.reset();
J
jianghaicheng 已提交
266 267
}

A
Allen Guo 已提交
268
void Compiler::Prepare(const Graph* graph) {
A
Allen Guo 已提交
269 270
  builder_ = popart::Builder::create();
  resources_ = std::make_unique<CompilerResources>();
A
Allen Guo 已提交
271
  graph_helper_ = std::make_unique<GraphHelper>(graph);
A
Allen Guo 已提交
272 273 274 275 276 277 278 279 280 281 282
  // Set the flag of set_amp_for_all_
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_matmul") {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
        set_amp_for_all_ = false;
        return;
      }
    }
  }
A
Allen Guo 已提交
283
}
J
jianghaicheng 已提交
284 285 286 287

void Compiler::RegisterOpFunc() {
  VLOG(10) << "enter Compiler::RegisterOpFunc";
#define INT_VEC std::vector<std::int64_t>
A
Allen Guo 已提交
288
#define INT32_VEC std::vector<std::int32_t>
J
jianghaicheng 已提交
289 290 291
#define FLOAT_VEC std::vector<float>
#define FLOAT float
#define INT std::int64_t
A
Allen Guo 已提交
292
#define INT32 std::int32_t
J
jianghaicheng 已提交
293 294 295 296 297 298 299
#define BOOL bool
#define STRING std::string
#define STRING_VEC std::vector<std::string*>
#define NONE

#define ARG(Type, Name) , GetAttrAllowNull<Type>(#Name, op_desc)
#define OPT_ARG(Type, Name) , GetOptAttrAllowNull<Type>(#Name, op_desc)
A
Allen Guo 已提交
300
#define SIG_ARG(TI, TO, Name) , GetCastSigAttrAllowNull<TI, TO>(#Name, op_desc)
J
jianghaicheng 已提交
301 302 303 304 305 306 307
#define POPART_CONST_ARG(Name) , const PopartConstant& Name
#define HOST_SIDE_CONST_ARG(Name) , const HostSideConstant& Name
#define POPART_ATTRIB_VEC_ARG(Name)
#define BODY_ARG(Name) NONE

  name_function_ = {
#define OP_DECL(FuncName, OnnxImpl, Args)                     \
A
Allen Guo 已提交
308
  {#FuncName, [&](OpDesc* op_desc) {                          \
J
jianghaicheng 已提交
309 310 311 312 313 314
     auto op_type = op_desc->Type();                          \
     VLOG(10) << "build op:" << op_type << " args " << #Args; \
     auto inputs = GetOpInputs(op_desc);                      \
     auto debug_context = BuildDebugContext(op_desc);         \
     auto aiGraphcoreOpset = builder_->aiGraphcoreOpset1();   \
     auto aiOnnxOpset = builder_->aiOnnxOpset11();            \
A
Allen Guo 已提交
315
     NameScopeHelper ns_helper(op_desc, builder_.get());      \
J
jianghaicheng 已提交
316
     auto output_ids = OnnxImpl(inputs Args, debug_context);  \
A
Allen Guo 已提交
317
     PostLower(output_ids, op_desc);                          \
J
jianghaicheng 已提交
318
   }},  // NOLINT
A
Allen Guo 已提交
319 320
#include "paddle/fluid/platform/device/ipu/supported_ops_autogen.h"
#include "paddle/fluid/platform/device/ipu/supported_ops_custom.h"
J
jianghaicheng 已提交
321 322 323 324 325 326 327
  };

#undef OP_DECL
#undef BODY_ARG
#undef POPART_ATTRIB_VEC_ARG
#undef HOST_SIDE_CONST_ARG
#undef POPART_CONST_ARG
A
Allen Guo 已提交
328
#undef SIG_ARG
J
jianghaicheng 已提交
329 330 331 332 333 334
#undef OPT_ARG
#undef ARG
#undef NONE
#undef STRING_VEC
#undef STRING
#undef BOOL
A
Allen Guo 已提交
335
#undef INT32
J
jianghaicheng 已提交
336 337 338
#undef INT
#undef FLOAT
#undef FLOAT_VEC
A
Allen Guo 已提交
339
#undef INT32_VEC
J
jianghaicheng 已提交
340 341 342
#undef INT_VEC
}

A
Allen Guo 已提交
343
void Compiler::InitInputs(const std::vector<std::string>& feed_list) {
J
jianghaicheng 已提交
344
  for (const auto& feed_name : feed_list) {
A
Allen Guo 已提交
345 346 347
    auto* node = graph_helper_->vars_name_map[feed_name];
    auto* var_desc = node->Var();
    VLOG(10) << "feed_name= " << var_desc->Name();
348
    auto data_type = VarType2PopartDType(var_desc->GetDataType());
A
Allen Guo 已提交
349 350 351 352 353 354 355
    popart::TensorInfo input_info{data_type, var_desc->GetShape()};
    VLOG(10) << "popart input_info = " << input_info;
    popart::TensorId tensor_id =
        builder_->addInputTensor(input_info, feed_name);
    VLOG(10) << "popart input tensor id = " << tensor_id;
    resources_->inputs.push_back(tensor_id);
    resources_->tensors.emplace(var_desc->Name(), tensor_id);
J
jianghaicheng 已提交
356 357 358 359 360
  }
}

void Compiler::InitOutputs(const std::vector<std::string>& fetch_list) {
  for (const auto& fetch_name : fetch_list) {
A
Allen Guo 已提交
361 362
    auto tensor = resources_->tensors.find(fetch_name);
    PADDLE_ENFORCE_NE(
363 364
        tensor,
        resources_->tensors.end(),
A
Allen Guo 已提交
365 366 367
        platform::errors::NotFound(
            "Output tensor %s is not found, please check the model.",
            fetch_name));
J
jianghaicheng 已提交
368 369 370
    VLOG(10) << "fetch_name= " << fetch_name;
    VLOG(10) << "popart output tensor id = " << tensor->second;
    builder_->addOutputTensor(tensor->second);
A
Allen Guo 已提交
371 372 373 374
    resources_->outputs.push_back(tensor->second);
  }
}

A
Allen Guo 已提交
375
void Compiler::LowerConstants(const Scope* scope) {
A
Allen Guo 已提交
376 377
  auto& kid_scope = scope->NewScope();
  VLOG(10) << "enter Compiler::LowerConstants";
A
Allen Guo 已提交
378
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
379 380 381 382 383 384
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_constant") {
      auto shape =
          BOOST_GET_CONST(std::vector<int64_t>, op_desc->GetAttr("dims"));
      auto dtype_ = BOOST_GET_CONST(int, op_desc->GetAttr("dtype"));
385 386 387
      auto dtype = PopartDType2VarType(
          OnnxDType2PopartType(static_cast<ONNXDataType>(dtype_)));
      auto tensor_name = GetOpOutputs(op_desc).front();
A
Allen Guo 已提交
388 389 390 391 392 393
      auto* var = kid_scope.Var(tensor_name);
      VLOG(10) << "lowering constant: " << tensor_name;
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      ConstantOpAttrVisitor visitor(tensor, dtype);
      auto value = op_desc->GetAttr("value");
      boost::apply_visitor(visitor, value);
394
      auto ddim = phi::make_ddim(shape);
A
Allen Guo 已提交
395 396 397
      tensor->Resize(ddim);

      auto const_data = std::unique_ptr<popart::ConstVoidData>();
398
      popart::TensorInfo tensor_info(PhiDType2PopartDType(tensor->dtype()),
A
Allen Guo 已提交
399
                                     shape);
A
Allen Guo 已提交
400
      const_data.reset(new popart::ConstVoidData(tensor->data(), tensor_info));
A
Allen Guo 已提交
401
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
402
      popart::TensorId result = builder_->aiOnnxOpset11().constant(*const_data);
A
Allen Guo 已提交
403
      PostLower(result, op_desc);
A
Allen Guo 已提交
404 405
      resources_->tensors.emplace(tensor_name, result);
    }
J
jianghaicheng 已提交
406
  }
A
Allen Guo 已提交
407
  VLOG(10) << "leave Compiler::LowerConstants";
J
jianghaicheng 已提交
408 409
}

A
Allen Guo 已提交
410
void Compiler::LowerWeights(const Scope* scope) {
A
Allen Guo 已提交
411
  VLOG(10) << "enter Compiler::LowerWeights";
A
Allen Guo 已提交
412
  // At this step, the graph doesn't contains optimizer related states
A
Allen Guo 已提交
413 414
  for (auto id : graph_helper_->sorted_vars_id) {
    auto* node = graph_helper_->nodes_id_map[id];
A
Allen Guo 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    // Weights are var node and Persistable
    if (node->IsVar() && !node->IsCtrlVar() && node->Var() &&
        node->Var()->Persistable()) {
      // Weights are Parameter in training mode
      if (ipu_strategy_->is_training && !node->Var()->IsParameter()) {
        continue;
      }
      auto var_name = node->Var()->Name();
      // Some op has same input and output tensor, like batchnorm
      if (resources_->tensors.count(var_name) != 0) {
        VLOG(10) << "found existed one, skip lowering Weight: " << var_name;
        continue;
      }
      VLOG(10) << "lowering weight: " << var_name;
      auto var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
431 432 433
          var,
          platform::errors::NotFound("Tensor %s is not found in the scope",
                                     var_name));
A
Allen Guo 已提交
434
      auto tensor = var->Get<framework::LoDTensor>();
435
      auto dtype = PhiDType2PopartDType(tensor.dtype());
A
Allen Guo 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448
      auto shape = std::vector<int64_t>();
      for (size_t i = 0; i < tensor.dims().size(); ++i) {
        shape.push_back(tensor.dims().at(i));
      }
      popart::TensorInfo tensor_info(dtype, shape);
      popart::ConstVoidData const_data{tensor.data(), tensor_info};
      if (!node->outputs.empty()) {
        auto op_node = node->outputs[0];
        NameScopeHelper ns_helper(op_node->Op(), builder_.get());
        popart::TensorId result =
            builder_->addInitializedInputTensor(const_data, var_name);
        resources_->tensors.emplace(var_name, result);
        resources_->weights.push_back(var_name);
J
jianghaicheng 已提交
449 450 451
      }
    }
  }
A
Allen Guo 已提交
452 453 454
  VLOG(10) << "leave Compiler::LowerWeights";
}

A
Allen Guo 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467
void Compiler::LowerBody() {
  VLOG(10) << "enter Compiler::LowerBody";
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    VLOG(10) << "lowering op: " << op_type;

    if (op_type == "popart_constant") {
      // pass
    } else if (op_type == "popart_optimizer") {
      // pass
    } else if (op_type == "popart_checkpointoutput") {
      auto inputs = GetOpInputs(op_desc);
A
Allen Guo 已提交
468
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
469
      auto output_ids = builder_->checkpointOutput(inputs);
A
Allen Guo 已提交
470
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483
    } else if (op_type == "popart_custom_op") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto attributes = std::map<std::string, popart::any>{};
      for (auto& attr : op_desc->GetAttrMap()) {
        CustomOpAttrVisitor visitor(&attributes, attr.first);
        boost::apply_visitor(visitor, attr.second);
      }
      auto __op_type =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("__op_type"));
      VLOG(10) << "Build graph from custom op: " << __op_type;
      auto it = custom_ops_.find(__op_type);
A
Allen Guo 已提交
484
      NameScopeHelper ns_helper(op_desc, builder_.get());
485 486 487 488 489 490
      auto output_ids = builder_->customOp(it->second.popart_op,
                                           it->second.popart_op.version,
                                           inputs,
                                           outputs.size(),
                                           attributes,
                                           debug_context);
A
Allen Guo 已提交
491
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
492 493 494 495 496 497
    } else if (op_type == "popart_printtensor") {
      auto inputs = GetOpInputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto print_gradient =
          BOOST_GET_CONST(int64_t, op_desc->GetAttr("print_gradient"));
      auto title = BOOST_GET_CONST(std::string, op_desc->GetAttr("title"));
A
Allen Guo 已提交
498
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
499 500
      auto output_ids = builder_->aiGraphcoreOpset1().printtensor(
          inputs, print_gradient, debug_context, title);
A
Allen Guo 已提交
501
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
502 503 504 505 506 507 508 509 510 511
    } else {
      auto itr = name_function_.find(op_type);
      if (itr != name_function_.end()) {
        itr->second(node->Op());
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "%s is not registered, please check for unsupported operators for "
            "running on IPU",
            op_type));
      }
A
Allen Guo 已提交
512
    }
A
Allen Guo 已提交
513 514 515
  }
  VLOG(10) << "leave Compiler::LowerBody";
}
A
Allen Guo 已提交
516

A
Allen Guo 已提交
517 518
void Compiler::LowerOptimizer(const Scope* scope) {
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_optimizer") {
      auto raw_type =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("raw_type"));
      resources_->optimizer_type = raw_type;
      auto loss_var =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("loss_var"));
      resources_->loss_var = resources_->tensors[loss_var];
      resources_->with_lr_sched =
          BOOST_GET_CONST(bool, op_desc->GetAttr("with_lr_sched"));
      if (op_desc->HasAttr("lr_var")) {
        auto lr_var = BOOST_GET_CONST(std::string, op_desc->GetAttr("lr_var"));
        resources_->lr_var = lr_var;
        resources_->lr = GetSingleVarFromScope<float>(scope, lr_var);
      } else {
        // adadelta has no lr
        resources_->lr = 0.01f;
        resources_->with_lr_sched = false;
      }
      VLOG(10) << "Set initial lr: " << resources_->lr;
A
Allen Guo 已提交
540 541

      // Get the type of optimizer
A
Allen Guo 已提交
542
      auto type = BOOST_GET_CONST(std::string, op_desc->GetAttr("type"));
A
Allen Guo 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
      // Set weight decay by tensor names for Lamb
      auto weight_decay_vars = BOOST_GET_CONST(
          std::vector<std::string>, op_desc->GetAttr("weight_decay_vars"));
      auto weight_decay_values = BOOST_GET_CONST(
          std::vector<float>, op_desc->GetAttr("weight_decay_values"));
      // Get the maximum permissible value for gradient clipping
      std::vector<popart::ClipNormSettings> clip_norm_settings = {};
      if (op_desc->HasAttr("clip_norm")) {
        auto clip_norm = BOOST_GET_CONST(float, op_desc->GetAttr("clip_norm"));
        clip_norm_settings.push_back(
            popart::ClipNormSettings::clipAllWeights(clip_norm));
        VLOG(10) << "Set the global gradient clipping with the maximum "
                    "permissible value: "
                 << clip_norm;
      }

      // Values from ipu_strategy
      auto loss_scaling = ipu_strategy_->loss_scaling;
      auto accl1_type = DataTypeFromStr(ipu_strategy_->accl1_type);
      auto accl2_type = DataTypeFromStr(ipu_strategy_->accl2_type);
      auto accl3_type = DataTypeFromStr(ipu_strategy_->accl3_type);

A
Allen Guo 已提交
565 566 567 568 569 570 571
      if (type == "sgd") {
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto momentum = BOOST_GET_CONST(float, op_desc->GetAttr("momentum"));
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::SGD>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
572
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
573 574 575
              popart::OptimizerValue(momentum, true),
              popart::SGD::getUnsetDampening(),
              popart::SGD::getUnsetVelocityScaling(),
576 577
              popart::OptimizerValue(loss_scaling, true),
              clip_norm_settings);
A
Allen Guo 已提交
578
        };
A
Allen Guo 已提交
579 580 581
        resources_->eval_optimizer = std::make_unique<popart::SGD>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
582 583
            popart::OptimizerValue(0.0, true),
            popart::SGD::getUnsetDampening(),
A
Allen Guo 已提交
584
            popart::SGD::getUnsetVelocityScaling(),
585 586
            popart::OptimizerValue(loss_scaling, true),
            clip_norm_settings);
A
Allen Guo 已提交
587 588 589 590 591 592 593 594 595 596
      } else if (type == "adam") {
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto beta1 = BOOST_GET_CONST(float, op_desc->GetAttr("beta1"));
        auto beta2 = BOOST_GET_CONST(float, op_desc->GetAttr("beta2"));
        auto eps = BOOST_GET_CONST(float, op_desc->GetAttr("eps"));
        auto mwn = ipu_strategy_->max_weight_norm;
        VLOG(10) << "set max_weight_norm: " << mwn;
        auto adam_mode_ =
            BOOST_GET_CONST(std::string, op_desc->GetAttr("adam_mode"));
A
Allen Guo 已提交
597 598 599
        auto adam_mode =
            AdamModeFromStr(adam_mode_, ipu_strategy_->use_no_bias_optimizer);
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
A
Allen Guo 已提交
600
        auto scaled_optimizer_state_ = ipu_strategy_->scaled_optimizer_state;
A
Allen Guo 已提交
601 602 603 604
        if (weight_decay_mode_.empty()) {
          weight_decay_mode_ = BOOST_GET_CONST(
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
605 606
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
A
Allen Guo 已提交
607 608 609 610 611 612 613 614 615
          if (adam_mode == popart::AdamMode::Lamb ||
              adam_mode == popart::AdamMode::LambNoBias) {
            const std::map<std::string, std::pair<float, bool>>
                optimizer_value = {{"defaultLearningRate", {lr, false}},
                                   {"defaultBeta1", {beta1, false}},
                                   {"defaultBeta2", {beta2, false}},
                                   {"defaultEps", {eps, true}},
                                   {"lossScaling", {loss_scaling, true}},
                                   {"defaultMaxWeightNorm", {mwn, true}}};
616 617 618 619 620 621 622 623 624
            auto optimizer_instance =
                std::make_unique<popart::Adam>(optimizer_value,
                                               adam_mode,
                                               weight_decay_mode,
                                               popart::DataType::UNDEFINED,
                                               accl1_type,
                                               accl2_type,
                                               clip_norm_settings,
                                               scaled_optimizer_state_);
A
Allen Guo 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
            for (int i = 0; i < weight_decay_vars.size(); i++) {
              optimizer_instance->insertSpecific(
                  weight_decay_vars[i],
                  {{"weightDecay", {weight_decay_values[i], false}}});
              VLOG(10) << "Set Tensor " << weight_decay_vars[i]
                       << " weight decay as " << weight_decay_values[i];
            }
            return optimizer_instance;
          } else {
            return std::make_unique<popart::Adam>(
                popart::OptimizerValue(lr, false),
                popart::OptimizerValue(weight_decay, false),
                popart::OptimizerValue(beta1, false),
                popart::OptimizerValue(beta2, false),
                popart::OptimizerValue(eps, true),
                popart::OptimizerValue(loss_scaling, true),
641 642 643 644 645 646 647 648
                popart::OptimizerValue(mwn, true),
                adam_mode,
                weight_decay_mode,
                popart::DataType::UNDEFINED,
                accl1_type,
                accl2_type,
                clip_norm_settings,
                scaled_optimizer_state_);
A
Allen Guo 已提交
649 650
          }
        };
A
Allen Guo 已提交
651
        if (adam_mode == popart::AdamMode::Lamb) {
A
Allen Guo 已提交
652 653 654 655 656 657 658
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {beta1, false}},
               {"defaultBeta2", {beta2, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
659 660 661 662 663 664 665 666 667
          auto eval_optimizer =
              std::make_unique<popart::Adam>(optimizer_value,
                                             adam_mode,
                                             weight_decay_mode,
                                             popart::DataType::UNDEFINED,
                                             popart::DataType::FLOAT,
                                             popart::DataType::FLOAT,
                                             clip_norm_settings,
                                             scaled_optimizer_state_);
A
Allen Guo 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else if (adam_mode == popart::AdamMode::LambNoBias) {
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {1.0, false}},
               {"defaultBeta2", {1.0, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
681 682 683 684 685 686 687 688 689
          auto eval_optimizer =
              std::make_unique<popart::Adam>(optimizer_value,
                                             adam_mode,
                                             weight_decay_mode,
                                             popart::DataType::UNDEFINED,
                                             popart::DataType::FLOAT,
                                             popart::DataType::FLOAT,
                                             clip_norm_settings,
                                             scaled_optimizer_state_);
A
Allen Guo 已提交
690 691 692 693 694 695 696 697 698 699 700
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else {
          resources_->eval_optimizer = std::make_unique<popart::Adam>(
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(beta1, false),
              popart::OptimizerValue(beta2, false),
A
Allen Guo 已提交
701 702
              popart::OptimizerValue(eps, true),
              popart::OptimizerValue(loss_scaling, true),
703 704 705 706 707 708 709
              popart::OptimizerValue(mwn, true),
              adam_mode,
              weight_decay_mode,
              popart::DataType::UNDEFINED,
              popart::DataType::FLOAT,
              popart::DataType::FLOAT,
              clip_norm_settings,
A
Allen Guo 已提交
710
              scaled_optimizer_state_);
A
Allen Guo 已提交
711
        }
A
Allen Guo 已提交
712 713 714 715 716 717 718 719 720
      } else if (type == "adaptive") {
        auto alpha = BOOST_GET_CONST(float, op_desc->GetAttr("alpha"));
        auto momentum = BOOST_GET_CONST(float, op_desc->GetAttr("momentum"));
        auto eps = BOOST_GET_CONST(float, op_desc->GetAttr("eps"));
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto adaptive_mode_ =
            BOOST_GET_CONST(std::string, op_desc->GetAttr("adaptive_mode"));
        auto adaptive_mode = AdaptiveModeFromStr(adaptive_mode_);
A
Allen Guo 已提交
721 722 723 724 725
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
        if (weight_decay_mode_.empty()) {
          weight_decay_mode_ = BOOST_GET_CONST(
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
726 727 728 729
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::Adaptive>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
730
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
731 732 733
              popart::OptimizerValue(alpha, true),
              popart::OptimizerValue(momentum, true),
              popart::OptimizerValue(eps, true),
734 735 736 737 738 739 740
              popart::OptimizerValue(loss_scaling, true),
              adaptive_mode,
              weight_decay_mode,
              popart::DataType::UNDEFINED,
              accl1_type,
              accl2_type,
              accl3_type);
A
Allen Guo 已提交
741
        };
A
Allen Guo 已提交
742 743 744 745 746 747
        resources_->eval_optimizer = std::make_unique<popart::Adaptive>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(alpha, true),
            popart::OptimizerValue(momentum, true),
            popart::OptimizerValue(eps, true),
748 749 750 751 752 753
            popart::OptimizerValue(loss_scaling, true),
            adaptive_mode,
            weight_decay_mode,
            popart::DataType::UNDEFINED,
            popart::DataType::FLOAT,
            popart::DataType::FLOAT,
A
Allen Guo 已提交
754
            popart::DataType::UNDEFINED);
A
Allen Guo 已提交
755 756 757 758 759 760
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "optimizer %s is not implemented", type));
      }
    }
  }
J
jianghaicheng 已提交
761 762
}

A
Allen Guo 已提交
763 764 765 766 767
void Compiler::PostLower(const std::vector<std::string>& tensor_ids,
                         const OpDesc* op_desc) {
  // Set pipline
  // Due to the limitation of popart, if an op has multiple outputs,
  // pipline settings needs to be set at the same time
J
jianghaicheng 已提交
768 769 770 771 772 773 774 775 776 777
  auto tensor_ids_set =
      std::set<std::string>(tensor_ids.begin(), tensor_ids.end());
  if (op_desc->HasAttr(sIpuIndexAttr)) {
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_ids_set, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_ids_set, ipu_stage);
A
Allen Guo 已提交
778
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
779 780 781
               << " for op: " << op_desc->Type();
    }
  }
782 783 784
  // Record output tensors
  auto pd_outs = GetOpOutputs(op_desc);
  PADDLE_ENFORCE_EQ(
785 786
      pd_outs.size(),
      tensor_ids.size(),
787 788 789 790
      platform::errors::Fatal("paddle and popart op have different outputs"));
  for (int i = 0; i < tensor_ids.size(); ++i) {
    resources_->tensors.emplace(pd_outs[i], tensor_ids[i]);
  }
A
Allen Guo 已提交
791 792 793
  for (auto& tensor_id : tensor_ids) {
    PostLower(tensor_id, op_desc, true);
  }
J
jianghaicheng 已提交
794 795
}

A
Allen Guo 已提交
796
void Compiler::PostLower(const std::string& tensor_id, const OpDesc* op_desc) {
797 798 799
  // Record output tensor
  auto pd_outs = GetOpOutputs(op_desc);
  PADDLE_ENFORCE_EQ(
800 801
      pd_outs.size(),
      1,
802 803
      platform::errors::Fatal("paddle and popart op have different outputs"));
  resources_->tensors.emplace(pd_outs[0], tensor_id);
A
Allen Guo 已提交
804 805
  PostLower(tensor_id, op_desc, false);
}
J
jianghaicheng 已提交
806

807 808
void Compiler::PostLower(const std::string& tensor_id,
                         const OpDesc* op_desc,
A
Allen Guo 已提交
809 810 811
                         bool skip_pipline) {
  // Set pipline
  if (!skip_pipline && op_desc->HasAttr(sIpuIndexAttr)) {
J
jianghaicheng 已提交
812 813 814 815 816 817 818
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_id, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_id, ipu_stage);
A
Allen Guo 已提交
819
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
820 821 822
               << " for op: " << op_desc->Type();
    }
  }
A
Allen Guo 已提交
823
  // Set amp
A
Allen Guo 已提交
824
  if (op_desc->Type() == "popart_matmul") {
A
Allen Guo 已提交
825 826 827 828
    if (set_amp_for_all_) {
      auto amp = ipu_strategy_->available_memory_proportion;
      if (amp < 0.0f || amp > 1.0) {
        PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
829 830
            "AvailableMemoryProportion %f is invalid, which should be in "
            "range [0.0, 1.0]",
A
Allen Guo 已提交
831 832 833 834 835 836 837 838 839 840
            amp));
      }
      if (amp > 0.0f) {
        builder_->setAvailableMemoryProportion(tensor_id, amp);
      }
    } else {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
        auto amp = BOOST_GET_CONST(float, op_desc->GetAttr(sAvailMemAttribute));
        if (amp < 0.0f || amp > 1.0) {
          PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
841 842
              "AvailableMemoryProportion %f is invalid, which should be in "
              "range [0.0, 1.0]",
A
Allen Guo 已提交
843 844 845 846 847 848 849 850
              amp));
        }
        if (amp > 0.0f) {
          builder_->setAvailableMemoryProportion(tensor_id, amp);
          VLOG(10) << "set available_memory_proportion for tensor: "
                   << tensor_id << " as " << amp;
        }
      }
A
Allen Guo 已提交
851
    }
A
Allen Guo 已提交
852
    // Set serialize matmul
A
Allen Guo 已提交
853 854 855 856 857 858 859 860
    if (op_desc->HasAttr(sMatmulSerializeFactor)) {
      auto factor =
          BOOST_GET_CONST(int, op_desc->GetAttr(sMatmulSerializeFactor));
      std::string mode = "output_channels";
      if (op_desc->HasAttr(sMatmulSerializeMode)) {
        mode = BOOST_GET_CONST(std::string,
                               op_desc->GetAttr(sMatmulSerializeMode));
      }
A
Allen Guo 已提交
861
      builder_->setSerializeMatMul({tensor_id}, mode, factor, true);
A
Allen Guo 已提交
862 863 864
    }
  }
}
J
jianghaicheng 已提交
865

A
Allen Guo 已提交
866 867 868 869 870 871 872 873
void Compiler::SetCustomOps(
    const std::vector<IpuCustomOpIdentifier>& custom_ops) {
  for (auto x : custom_ops) {
    custom_ops_.emplace(x.paddle_op, x);
  }
}

std::string Compiler::GetFP16ModelProto() {
J
jianghaicheng 已提交
874 875
  popart::GraphTransformer graph_transformer(builder_->getModelProto());
  graph_transformer.convertFloatsToHalfs();
A
Allen Guo 已提交
876
  return graph_transformer.getModelProto();
J
jianghaicheng 已提交
877 878
}

879
std::string Compiler::GetModelProto() { return builder_->getModelProto(); }
J
jianghaicheng 已提交
880 881 882 883 884 885 886 887 888 889 890 891

void Compiler::SaveModelProto(const std::string& path) {
  builder_->saveModelProto(path);
}

void Compiler::SaveModelProtoNoCheck(const std::string& path) {
  auto proto = GetModelProto();
  std::ofstream onnxfile(path, std::ios_base::binary);
  onnxfile.write(proto.data(), proto.size());
  onnxfile.close();
}

A
Allen Guo 已提交
892
std::vector<std::string> Compiler::GetOpInputs(const OpDesc* op) {
J
jianghaicheng 已提交
893 894 895
  auto ins = op->Input("__inputs__");
  std::vector<std::string> inputs;
  for (const auto& in : ins) {
A
Allen Guo 已提交
896 897
    if (resources_->tensors.find(in) != resources_->tensors.end()) {
      inputs.push_back(resources_->tensors[in]);
J
jianghaicheng 已提交
898 899 900 901 902 903 904
    } else {
      inputs.push_back(in);
    }
  }
  return inputs;
}

A
Allen Guo 已提交
905
const std::vector<std::string>& Compiler::GetOpOutputs(const OpDesc* op) {
J
jianghaicheng 已提交
906 907 908
  return op->Output("__outputs__");
}

A
Allen Guo 已提交
909
popart::DebugContext Compiler::BuildDebugContext(const OpDesc* op) {
J
jianghaicheng 已提交
910 911 912 913 914 915 916 917 918 919
  auto op_identify_id =
      BOOST_GET_CONST(std::string, op->GetAttr(sOpIdentifyIdAttr));
  VLOG(10) << "op_identify_id of op: " << op->Type() << " is "
           << op_identify_id;
  return popart::DebugContext(op_identify_id);
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle