expand_v2_op.cc 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/expand_v2_op.h"
16

17 18 19
#include <memory>
#include <string>
#include <vector>
H
hong 已提交
20 21

#include "paddle/fluid/framework/infershape_utils.h"
22
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
23 24
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
25 26

#define MAX_RANK_SUPPORTED 6
27 28 29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
40 41 42 43 44
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
45 46
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
47 48 49 50 51
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
52 53 54
  }

  framework::OpKernelType GetKernelTypeForVar(
55 56
      const std::string& var_name,
      const Tensor& tensor,
57 58 59 60
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "expand_shapes_tensor" || var_name == "Shape") {
      return expected_kernel_type;
    }
61 62
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  }
};

class ExpandV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
    AddInput("Shape",
             "(Tensor<int>), optional). If provided, expand according to "
             "this given Shape. It has a higher priority than "
             "expand_shapes_tensor and the shape attribute.")
        .AsDispensable();
    AddInput("expand_shapes_tensor",
             "(Tensor Tensor<int>), epxanded shape for X."
             "It has a higher priority than shape attribute, but a lower "
             "priority than the input Shape")
        .AsDuplicable()
        .AsDispensable();
    AddOutput("Out",
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
    AddAttr<std::vector<int>>("shape", "The expanded shape for each dimension.")
        .SetDefault({});
91 92
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
93 94
        .SetDefault(false)
        .AsExtra();
95 96 97 98
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
99 100
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    AddComment(R"DOC(
Expand the input to the given shape. The rank of X
should be in [1, 6] and size of 'shape' must be in [1, 6] also.
Following is a using case:

Input(X) is a 3-D tensor with shape [2, 3, 1]:

        [
           [[1], [2], [3]],
           [[4], [5], [6]]
        ]

Attr(shape):  [2, 6, 2]

Output(Out) is a 3-D tensor with shape [2, 6, 2]:

        [
            [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
            [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
        ]

)DOC");
  }
};

class ExpandV2GradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandV2Grad");
133 134 135 136
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "ExpandV2Grad");
137 138 139 140 141 142 143 144

    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> expand_shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (expand_shape.size() == 0) {
      expand_shape = std::vector<int>(x_dims.size(), -1);
    }

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
145
    auto x_dim_vec = phi::vectorize<int>(x_dims);
146 147 148 149
    auto diff = expand_shape.size() - x_dim_vec.size();
    x_dim_vec.insert(x_dim_vec.begin(), diff, -1);

    for (size_t i = 0; i < expand_shape.size(); ++i) {
L
lilong12 已提交
150
      if (expand_shape[i] < 0 || x_dim_vec[i] == -1) {
151 152 153 154
        continue;
      } else {
        if (ctx->IsRuntime()) {
          PADDLE_ENFORCE_EQ(
155 156
              expand_shape[i],
              out_dims[i],
157 158 159
              platform::errors::InvalidArgument(
                  "The size (%d) of the dimension %d of Input(Out@GRAD) should "
                  "be equal to the crroresponding dimension size of shape(%d).",
160 161 162
                  out_dims[i],
                  i,
                  expand_shape[i]));
163 164 165 166 167 168 169 170 171 172 173 174 175
        }
      }
    }
    auto x_grad_name = framework::GradVarName("X");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
176 177 178 179 180
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
181 182
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
183 184 185 186 187
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
188 189 190
  }

  framework::OpKernelType GetKernelTypeForVar(
191 192
      const std::string& var_name,
      const Tensor& tensor,
193 194 195 196
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "expand_shapes_tensor" || var_name == "Shape") {
      return expected_kernel_type;
    }
197 198
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  }
};

template <typename T>
class ExpandV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("expand_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("expand_shapes_tensor", this->Input("expand_shapes_tensor"));
    op->SetInput("Shape", this->Input("Shape"));
    op->SetAttrMap(this->Attrs());
  }
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
template <typename T>
class ExpandV2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("expand_v2");
    op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    if (this->HasInput("expand_shapes_tensor")) {
      op->SetInput("expand_shapes_tensor", this->Input("expand_shapes_tensor"));
    }
    if (this->HasInput("Shape")) {
      op->SetInput("Shape", this->Input("Shape"));
    }
    op->SetAttrMap(this->Attrs());
  }
};

239 240 241 242 243
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ExpandV2GradNoNeedBufVarsInferer, "X");

}  // namespace operators
}  // namespace paddle

244 245
DECLARE_INFER_SHAPE_FUNCTOR(expand_v2,
                            ExpandInferShapeFunctor,
H
hong 已提交
246 247
                            PD_INFER_META(phi::ExpandInferMeta));

248
namespace ops = paddle::operators;
249 250 251
REGISTER_OPERATOR(expand_v2,
                  ops::ExpandV2Op,
                  ops::ExpandV2OpMaker,
252
                  ops::ExpandV2GradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
253 254
                  ops::ExpandV2GradOpMaker<paddle::imperative::OpBase>,
                  ExpandInferShapeFunctor);
255 256
REGISTER_OPERATOR(expand_v2_grad,
                  ops::ExpandV2GradOp,
257 258
                  ops::ExpandV2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ExpandV2DoubleGradOpMaker<paddle::imperative::OpBase>,
259
                  ops::ExpandV2GradNoNeedBufVarsInferer);