sparse_utils_kernel.cc 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
16

17 18 19
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
20
#include "paddle/phi/core/visit_type.h"
21
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
22

23
namespace phi {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
namespace sparse {

template <typename T>
inline bool IsZero(const T* data, const size_t n) {
  const T zero = static_cast<T>(0);
  for (size_t i = 0; i < n; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

// TODO(zhangkaihuo): implement a kernel to count the number of non-zero
// elements in tensor
template <typename T>
inline int64_t GetNonZeroNum(const DenseTensor& dense,
                             const int64_t sparse_dim) {
  const auto& dims = dense.dims();
  PADDLE_ENFORCE_GE(
      dims.size(),
      sparse_dim,
46
      phi::errors::InvalidArgument(
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
          "sparse_dim(%d) should be less than or equal to dense.dim(%d)",
          sparse_dim,
          dims.size()));

  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  const T* data = dense.data<T>();
  int64_t non_zero_num = 0;
  for (int64_t i = 0; i < rows; i++) {
    if (!IsZero(data + i * cols, cols)) {
      non_zero_num = non_zero_num + 1;
    }
  }
  return non_zero_num;
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
72 73 74 75 76 77
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
78 79 80

  int64_t non_zero_num = GetNonZeroNum<T>(x, sparse_dim);

81 82
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
83
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
84 85
  phi::DenseTensor indices =
      phi::Empty<int64_t>(dev_ctx, {sparse_dim, non_zero_num});
86
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
87 88
  int64_t* indices_data = indices.data<int64_t>();
  T* values_data = values.data<T>();
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  int index = 0;
  for (int i = 0; i < rows; i++) {
    if (!IsZero(x_data + i * cols, cols)) {
      int64_t sparse_index = i;
      for (int64_t j = sparse_dim - 1; j >= 0; j--) {
        indices_data[j * non_zero_num + index] = sparse_index % x_dims[j];
        sparse_index /= x_dims[j];
      }
      memcpy(values_data + index * cols, x_data + i * cols, cols * sizeof(T));
      ++index;
    }
  }
  out->SetMember(indices, values, x_dims, true);
}

109 110 111 112
template <typename T, typename IntT>
void SparseCsrToCooCPUKernel(const CPUContext& dev_ctx,
                             const SparseCsrTensor& x,
                             SparseCooTensor* out) {
113 114 115 116 117
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
118 119
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
120 121 122 123 124 125
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
126 127 128 129 130 131
  phi::DenseTensor indices =
      phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  phi::DenseTensor values = phi::Empty<T>(dev_ctx, {non_zero_num});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
132
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
133 134
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  T* coo_values_data = values.data<T>();
135 136 137 138 139 140 141

  int batch = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  int index = 0;
  for (int b = 0; b < batch; b++) {
    for (int i = 0; i < rows; i++) {
142
      for (IntT j = csr_crows_data[b * (rows + 1) + i];
143 144 145 146 147 148 149 150 151 152 153
           j < csr_crows_data[b * (rows + 1) + i + 1];
           j++) {
        coo_rows_data[index] = i;
        if (batch_ptr) {
          batch_ptr[index] = b;
        }
        ++index;
      }
    }
  }

154
  memcpy(coo_cols_data, csr_cols_data, sizeof(IntT) * non_zero_num);
155 156 157 158
  memcpy(coo_values_data, csr_values_data, sizeof(T) * non_zero_num);
  out->SetMember(indices, values, x_dims, true);
}

159
template <typename T, typename Context>
160 161 162 163 164 165 166 167 168 169 170 171 172
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_crows().dtype(), "SparseCsrToCooCPUKernel", ([&] {
        SparseCsrToCooCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename T, typename IntT>
void SparseCooToCsrCPUKernel(const CPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             SparseCsrTensor* out) {
173 174 175 176
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
177
                    phi::errors::InvalidArgument(
178 179 180 181 182 183 184
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

Z
zyfncg 已提交
185 186
  phi::DenseTensor non_zero_crows;
  non_zero_crows.Resize({batchs * (rows + 1)});
187
  IntT* csr_crows_data = dev_ctx.template Alloc<IntT>(&non_zero_crows);
Z
zyfncg 已提交
188 189 190

  phi::DenseTensor non_zero_cols;
  non_zero_cols.Resize({non_zero_num});
191
  IntT* csr_cols_data = dev_ctx.template Alloc<IntT>(&non_zero_cols);
Z
zyfncg 已提交
192 193 194 195

  phi::DenseTensor non_zero_elements;
  non_zero_elements.Resize({non_zero_num});
  T* csr_values_data = dev_ctx.template Alloc<T>(&non_zero_elements);
196 197 198

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
199 200
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
201
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
202
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  const T* coo_values_data = coo_values.data<T>();

  std::vector<int64_t> offsets(batchs, 0);
  if (batchs > 1) {
    for (int i = 0; i < non_zero_num; i++) {
      if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
        offsets[batchs_ptr[i]] = i + 1;
      }
    }
  } else {
    offsets[0] = non_zero_num;
  }

  for (int b = 0; b < batchs; b++) {
    if (offsets[b] == 0) continue;
    int batch_start = 0;
    int batch_non_zero_num = offsets[b];
    if (b > 0) {
      batch_start = offsets[b - 1];
      batch_non_zero_num -= batch_start;
    }
    auto* coo_rows_ptr = coo_rows_data + batch_start;
    for (int i = 0; i <= coo_rows_ptr[0]; i++) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
    for (int64_t i = 1; i < batch_non_zero_num; i++) {
229
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
230 231 232
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
233
    for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1; i++) {
234 235 236 237
      csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
    }
  }

238
  memcpy(csr_cols_data, coo_cols_data, sizeof(IntT) * non_zero_num);
239 240 241 242
  memcpy(csr_values_data, coo_values_data, sizeof(T) * non_zero_num);
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

Z
zhangkaihuo 已提交
243
template <typename T, typename Context>
244 245 246 247 248 249 250 251 252 253 254 255 256
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "SparseCooToCsrCPUKernel", ([&] {
        SparseCooToCsrCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename T, typename IntT>
void SparseCooToDenseCPUKernel(const CPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               DenseTensor* out) {
Z
zhangkaihuo 已提交
257 258 259 260 261 262 263 264 265
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
Z
zhangkaihuo 已提交
266
  const int64_t dense_dim = x.dense_dim();
Z
zhangkaihuo 已提交
267 268

  const T* x_data = values.data<T>();
Z
zhangkaihuo 已提交
269 270 271 272
  *out = phi::Empty(
      dev_ctx,
      DenseTensorMeta(x.dtype(), x.dims(), x.non_zero_elements().layout()));
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

  memset(out_data, 0, sizeof(T) * out->numel());
  for (auto i = 0; i < non_zero_num; i++) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
288
      index += indices.data<IntT>()[j * non_zero_num + i] * sparse_offsets[j];
Z
zhangkaihuo 已提交
289 290 291 292 293 294 295 296
    }

    for (int j = 0; j < base_offset; j++) {
      out_data[index * base_offset + j] = x_data[i * base_offset + j];
    }
  }
}

297 298 299 300 301 302 303 304 305 306
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "SparseCooToDenseCPUKernel", ([&] {
        SparseCooToDenseCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

307
}  // namespace sparse
308
}  // namespace phi
309

310
PD_REGISTER_KERNEL(dense_to_sparse_coo,
311 312
                   CPU,
                   ALL_LAYOUT,
313
                   phi::sparse::DenseToSparseCooKernel,
314 315 316 317 318 319 320 321
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
322

323
PD_REGISTER_KERNEL(sparse_csr_to_coo,
324 325
                   CPU,
                   ALL_LAYOUT,
326
                   phi::sparse::SparseCsrToCooKernel,
327 328 329 330 331 332 333 334
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
335

336
PD_REGISTER_KERNEL(sparse_coo_to_csr,
337 338
                   CPU,
                   ALL_LAYOUT,
339
                   phi::sparse::SparseCooToCsrKernel,
340 341
                   float,
                   double,
342
                   phi::dtype::float16,
343 344 345 346 347 348
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

349
PD_REGISTER_KERNEL(dense_to_sparse_csr,
350 351
                   CPU,
                   ALL_LAYOUT,
352
                   phi::sparse::DenseToSparseCsrKernel,
353 354
                   float,
                   double,
355
                   phi::dtype::float16,
356 357 358 359 360
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
361

362
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
363 364
                   CPU,
                   ALL_LAYOUT,
365
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
366 367
                   float,
                   double,
368
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
369 370 371 372 373 374
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

375
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
376 377
                   CPU,
                   ALL_LAYOUT,
378
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
379 380
                   float,
                   double,
381
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
382 383 384 385 386
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

PD_REGISTER_KERNEL(coo_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
417 418 419 420 421 422 423 424 425 426 427 428

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}