mul_op.cc 6.5 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/operators/mul_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20 21
using framework::Tensor;

22
class MulOpShapeInference : public framework::InferShapeBase {
Y
Yu Yang 已提交
23
 public:
24
  void operator()(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26 27 28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
32

Q
Qiao Longfei 已提交
33 34
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
35

Y
Yu Yang 已提交
36 37 38 39
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;

40 41 42 43 44 45 46 47
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        "The input tensor X's rank of MulOp should be larger than "
        "x_num_col_dims.");
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        "The input tensor Y's rank of MulOp should be larger than "
        "y_num_col_dims.");
48

F
fengjiayi 已提交
49 50
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
51

Y
Yan Chunwei 已提交
52
    PADDLE_ENFORCE_EQ(
53
        x_mat_dims[1], y_mat_dims[0],
54
        "First matrix's width must be equal with second matrix's height.");
Y
Yu Yang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
68
    ctx->ShareLoD("X", /*->*/ "Out");
69 70 71
  }
};

D
dongzhihong 已提交
72
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
73
 public:
74
  MulOpMaker(OpProto* proto, OpAttrChecker* op_checker)
75
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
76 77 78
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
79
    AddAttr<int>(
F
fengjiayi 已提交
80
        "x_num_col_dims",
C
caoying03 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
96
        )DOC")
F
WIP  
fengjiayi 已提交
97
        .SetDefault(1)
F
fengjiayi 已提交
98
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
99
    AddAttr<int>(
F
fengjiayi 已提交
100
        "y_num_col_dims",
C
caoying03 已提交
101 102 103 104
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
105
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
106
        )DOC")
F
WIP  
fengjiayi 已提交
107
        .SetDefault(1)
F
fengjiayi 已提交
108
        .EqualGreaterThan(1);
109
    AddComment(R"DOC(
C
caoying03 已提交
110
Mul Operator.
K
kexinzhao 已提交
111

C
caoying03 已提交
112
This operator is used to perform matrix multiplication for input $X$ and $Y$.
113

114 115
The equation is:

K
kexinzhao 已提交
116
    $$Out = X * Y$$
117

C
caoying03 已提交
118 119
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
120

121 122 123 124
)DOC");
  }
};

D
dongzhihong 已提交
125
class MulOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
126 127 128
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

129
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
130 131 132 133 134 135 136
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
137

Q
Qiao Longfei 已提交
138 139 140 141
    auto x_mat_dims = framework::flatten_to_2d(
        x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
    auto y_mat_dims = framework::flatten_to_2d(
        y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
142

Q
Qiao Longfei 已提交
143 144 145 146 147 148 149 150 151
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
152 153 154
  }
};

155 156 157
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
158
namespace ops = paddle::operators;
159 160 161 162
REGISTER_OPERATOR(mul, paddle::framework::OperatorWithKernel, ops::MulOpMaker,
                  ops::MulOpShapeInference,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(mul_grad, ops::MulOpGrad);
Q
QI JUN 已提交
163 164 165 166
REGISTER_OP_CPU_KERNEL(
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>);