pixel_shuffle_op.cc 7.6 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pixel_shuffle_op.h"
#include <memory>
14
#include "paddle/fluid/framework/op_version_registry.h"
R
ruri 已提交
15 16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class PixelShuffleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
R
ruri 已提交
24 25 26 27 28 29
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound(
                          "Input(X) of PixelShuffleOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::NotFound(
                          "Output(Out) of PixelShuffleOp should not be null."));
R
ruri 已提交
30 31

    auto input_dims = ctx->GetInputDim("X");
R
ruri 已提交
32 33 34 35 36
    PADDLE_ENFORCE_EQ(input_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input should be a 4-D tensor of format [N, C, H, W] "
                          "or [N, H, W, C], but got %u.",
                          input_dims.size()));
R
ruri 已提交
37

R
ruri 已提交
38 39
    auto upscale_factor = ctx->Attrs().Get<int>("upscale_factor");

R
ruri 已提交
40 41 42 43 44 45 46 47 48 49
    const std::string data_format =
        ctx->Attrs().Get<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC");

    if (!channel_last) {
      PADDLE_ENFORCE_EQ(
          input_dims[1] % (upscale_factor * upscale_factor), 0,
          platform::errors::InvalidArgument(
              "The square of upscale_factor[%u] should divide the "
              "number of channel[%u]",
R
ruri 已提交
50
              upscale_factor * upscale_factor, input_dims[1]));
R
ruri 已提交
51 52 53 54 55 56
    } else {
      PADDLE_ENFORCE_EQ(
          input_dims[3] % (upscale_factor * upscale_factor), 0,
          platform::errors::InvalidArgument(
              "The square of upscale_factor[%u] should divide the "
              "number of channel[%u]",
R
ruri 已提交
57
              upscale_factor * upscale_factor, input_dims[3]));
R
ruri 已提交
58
    }
R
ruri 已提交
59 60
    auto output_dims = input_dims;
    output_dims[0] = input_dims[0];
R
ruri 已提交
61 62 63 64 65 66 67 68 69
    if (!channel_last) {
      output_dims[1] = input_dims[1] / (upscale_factor * upscale_factor);
      output_dims[2] = input_dims[2] * upscale_factor;
      output_dims[3] = input_dims[3] * upscale_factor;
    } else {
      output_dims[1] = input_dims[1] * upscale_factor;
      output_dims[2] = input_dims[2] * upscale_factor;
      output_dims[3] = input_dims[3] / (upscale_factor * upscale_factor);
    }
R
ruri 已提交
70 71 72 73 74 75 76
    ctx->SetOutputDim("Out", output_dims);
  }
};

class PixelShuffleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
R
ruri 已提交
77 78 79 80 81 82 83 84
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of PixelShuffleOp, the layout is [N, C, "
             "H, W] or [N, H, W, C].");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "PixelShuffleOp. The layout is [N, C/factor^2, H*factor, "
              "W*factor] or [N, H*factor, W*factor, C/factor^2].");
R
ruri 已提交
85 86 87 88 89
    AddAttr<int>("upscale_factor",
                 "the factor to increase spatial resolution by.")
        .SetDefault(1)
        .AddCustomChecker([](const int& upscale_factor) {
          PADDLE_ENFORCE_GE(upscale_factor, 1,
R
ruri 已提交
90 91
                            platform::errors::InvalidArgument(
                                "upscale_factor should be larger than 0."));
R
ruri 已提交
92
        });
R
ruri 已提交
93 94 95 96 97
    AddAttr<std::string>(
        "data_format",
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\", Specify the data format of the input data.")
        .SetDefault("NCHW");
R
ruri 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    AddComment(R"DOC(
		Pixel Shuffle operator
		This operator rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
    		to a tensor of shape :math:`(C, H \times r, W \times r)`.

		This is useful for implementing efficient sub-pixel convolution
    		with a stride of :math:`1/r`.

		Please refer to the paper:
		 `Real-Time Single Image and Video Super-Resolution Using an Efficient 
		 Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_
    		by Shi et. al (2016) for more details. 

        )DOC");
  }
};

H
hong 已提交
116 117
template <typename T>
class PixelShuffleGradMaker : public framework::SingleGradOpMaker<T> {
R
ruri 已提交
118
 public:
H
hong 已提交
119
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
R
ruri 已提交
120

121
  void Apply(GradOpPtr<T> op) const override {
R
ruri 已提交
122
    op->SetType("pixel_shuffle_grad");
H
hong 已提交
123 124 125
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
R
ruri 已提交
126 127 128 129 130 131 132 133
  }
};

class PixelShuffleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
R
ruri 已提交
134 135 136 137 138 139
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound("Input(Out@Grad) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::NotFound("Output(X@Grad) should not be null"));
R
ruri 已提交
140 141

    auto do_dims = ctx->GetInputDim(framework::GradVarName("Out"));
R
ruri 已提交
142 143 144 145 146
    PADDLE_ENFORCE_EQ(do_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input should be a 4-D tensor of format [N, C, H, W] "
                          "or [N, H, W, C], but got %u.",
                          do_dims.size()));
R
ruri 已提交
147 148 149

    auto upscale_factor = ctx->Attrs().Get<int>("upscale_factor");

R
ruri 已提交
150 151 152 153
    const std::string data_format =
        ctx->Attrs().Get<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC");

R
ruri 已提交
154 155
    auto dx_dims = do_dims;
    dx_dims[0] = do_dims[0];
R
ruri 已提交
156 157 158 159 160 161 162 163 164 165

    if (!channel_last) {
      dx_dims[1] = do_dims[1] * (upscale_factor * upscale_factor);
      dx_dims[2] = do_dims[2] / upscale_factor;
      dx_dims[3] = do_dims[3] / upscale_factor;
    } else {
      dx_dims[1] = do_dims[1] / upscale_factor;
      dx_dims[2] = do_dims[2] / upscale_factor;
      dx_dims[3] = do_dims[3] * (upscale_factor * upscale_factor);
    }
R
ruri 已提交
166 167 168 169 170 171 172 173 174
    ctx->SetOutputDim(framework::GradVarName("X"), dx_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(pixel_shuffle, ops::PixelShuffleOp, ops::PixelShuffleOpMaker,
H
hong 已提交
175 176
                  ops::PixelShuffleGradMaker<paddle::framework::OpDesc>,
                  ops::PixelShuffleGradMaker<paddle::imperative::OpBase>);
R
ruri 已提交
177 178 179 180 181 182 183 184 185 186 187 188

REGISTER_OPERATOR(pixel_shuffle_grad, ops::PixelShuffleGradOp);

REGISTER_OP_CPU_KERNEL(
    pixel_shuffle,
    ops::PixelShuffleOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PixelShuffleOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    pixel_shuffle_grad,
    ops::PixelShuffleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PixelShuffleGradOpKernel<paddle::platform::CPUDeviceContext, double>);
189 190 191 192 193 194 195

REGISTER_OP_VERSION(pixel_shuffle)
    .AddCheckpoint(
        R"ROC(
               Compatible upgrade of pixel_shuffle, add a new attribute [data_format])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "data_format", "Specify the data format of the input data", true));