pixel_shuffle_op.cc 7.3 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pixel_shuffle_op.h"
#include <memory>

namespace paddle {
namespace operators {

class PixelShuffleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
R
ruri 已提交
23 24 25 26 27 28
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound(
                          "Input(X) of PixelShuffleOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::NotFound(
                          "Output(Out) of PixelShuffleOp should not be null."));
R
ruri 已提交
29 30

    auto input_dims = ctx->GetInputDim("X");
R
ruri 已提交
31 32 33 34 35
    PADDLE_ENFORCE_EQ(input_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input should be a 4-D tensor of format [N, C, H, W] "
                          "or [N, H, W, C], but got %u.",
                          input_dims.size()));
R
ruri 已提交
36

R
ruri 已提交
37 38
    auto upscale_factor = ctx->Attrs().Get<int>("upscale_factor");

R
ruri 已提交
39 40 41 42 43 44 45 46 47 48
    const std::string data_format =
        ctx->Attrs().Get<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC");

    if (!channel_last) {
      PADDLE_ENFORCE_EQ(
          input_dims[1] % (upscale_factor * upscale_factor), 0,
          platform::errors::InvalidArgument(
              "The square of upscale_factor[%u] should divide the "
              "number of channel[%u]",
R
ruri 已提交
49
              upscale_factor * upscale_factor, input_dims[1]));
R
ruri 已提交
50 51 52 53 54 55
    } else {
      PADDLE_ENFORCE_EQ(
          input_dims[3] % (upscale_factor * upscale_factor), 0,
          platform::errors::InvalidArgument(
              "The square of upscale_factor[%u] should divide the "
              "number of channel[%u]",
R
ruri 已提交
56
              upscale_factor * upscale_factor, input_dims[3]));
R
ruri 已提交
57
    }
R
ruri 已提交
58 59
    auto output_dims = input_dims;
    output_dims[0] = input_dims[0];
R
ruri 已提交
60 61 62 63 64 65 66 67 68
    if (!channel_last) {
      output_dims[1] = input_dims[1] / (upscale_factor * upscale_factor);
      output_dims[2] = input_dims[2] * upscale_factor;
      output_dims[3] = input_dims[3] * upscale_factor;
    } else {
      output_dims[1] = input_dims[1] * upscale_factor;
      output_dims[2] = input_dims[2] * upscale_factor;
      output_dims[3] = input_dims[3] / (upscale_factor * upscale_factor);
    }
R
ruri 已提交
69 70 71 72 73 74 75
    ctx->SetOutputDim("Out", output_dims);
  }
};

class PixelShuffleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
R
ruri 已提交
76 77 78 79 80 81 82 83
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of PixelShuffleOp, the layout is [N, C, "
             "H, W] or [N, H, W, C].");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "PixelShuffleOp. The layout is [N, C/factor^2, H*factor, "
              "W*factor] or [N, H*factor, W*factor, C/factor^2].");
R
ruri 已提交
84 85 86 87 88
    AddAttr<int>("upscale_factor",
                 "the factor to increase spatial resolution by.")
        .SetDefault(1)
        .AddCustomChecker([](const int& upscale_factor) {
          PADDLE_ENFORCE_GE(upscale_factor, 1,
R
ruri 已提交
89 90
                            platform::errors::InvalidArgument(
                                "upscale_factor should be larger than 0."));
R
ruri 已提交
91
        });
R
ruri 已提交
92 93 94 95 96
    AddAttr<std::string>(
        "data_format",
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\", Specify the data format of the input data.")
        .SetDefault("NCHW");
R
ruri 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    AddComment(R"DOC(
		Pixel Shuffle operator
		This operator rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
    		to a tensor of shape :math:`(C, H \times r, W \times r)`.

		This is useful for implementing efficient sub-pixel convolution
    		with a stride of :math:`1/r`.

		Please refer to the paper:
		 `Real-Time Single Image and Video Super-Resolution Using an Efficient 
		 Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_
    		by Shi et. al (2016) for more details. 

        )DOC");
  }
};

H
hong 已提交
115 116
template <typename T>
class PixelShuffleGradMaker : public framework::SingleGradOpMaker<T> {
R
ruri 已提交
117
 public:
H
hong 已提交
118
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
R
ruri 已提交
119

120
  void Apply(GradOpPtr<T> op) const override {
R
ruri 已提交
121
    op->SetType("pixel_shuffle_grad");
H
hong 已提交
122 123 124
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
R
ruri 已提交
125 126 127 128 129 130 131 132
  }
};

class PixelShuffleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
R
ruri 已提交
133 134 135 136 137 138
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound("Input(Out@Grad) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::NotFound("Output(X@Grad) should not be null"));
R
ruri 已提交
139 140

    auto do_dims = ctx->GetInputDim(framework::GradVarName("Out"));
R
ruri 已提交
141 142 143 144 145
    PADDLE_ENFORCE_EQ(do_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input should be a 4-D tensor of format [N, C, H, W] "
                          "or [N, H, W, C], but got %u.",
                          do_dims.size()));
R
ruri 已提交
146 147 148

    auto upscale_factor = ctx->Attrs().Get<int>("upscale_factor");

R
ruri 已提交
149 150 151 152
    const std::string data_format =
        ctx->Attrs().Get<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC");

R
ruri 已提交
153 154
    auto dx_dims = do_dims;
    dx_dims[0] = do_dims[0];
R
ruri 已提交
155 156 157 158 159 160 161 162 163 164

    if (!channel_last) {
      dx_dims[1] = do_dims[1] * (upscale_factor * upscale_factor);
      dx_dims[2] = do_dims[2] / upscale_factor;
      dx_dims[3] = do_dims[3] / upscale_factor;
    } else {
      dx_dims[1] = do_dims[1] / upscale_factor;
      dx_dims[2] = do_dims[2] / upscale_factor;
      dx_dims[3] = do_dims[3] * (upscale_factor * upscale_factor);
    }
R
ruri 已提交
165 166 167 168 169 170 171 172 173
    ctx->SetOutputDim(framework::GradVarName("X"), dx_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(pixel_shuffle, ops::PixelShuffleOp, ops::PixelShuffleOpMaker,
H
hong 已提交
174 175
                  ops::PixelShuffleGradMaker<paddle::framework::OpDesc>,
                  ops::PixelShuffleGradMaker<paddle::imperative::OpBase>);
R
ruri 已提交
176 177 178 179 180 181 182 183 184 185 186 187

REGISTER_OPERATOR(pixel_shuffle_grad, ops::PixelShuffleGradOp);

REGISTER_OP_CPU_KERNEL(
    pixel_shuffle,
    ops::PixelShuffleOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PixelShuffleOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    pixel_shuffle_grad,
    ops::PixelShuffleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PixelShuffleGradOpKernel<paddle::platform::CPUDeviceContext, double>);