crop_op.h 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
S
Siddharth Goyal 已提交
16 17
#include <utility>
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"
W
wanghaoshuang 已提交
21 22

namespace paddle {
23
namespace operators {  // Internal
W
wanghaoshuang 已提交
24 25 26 27

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
28 29
using framework::Tensor;

F
stash  
fengjiayi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
  std::vector<int> res;
  int rank = ctx.Input<Tensor>("X")->dims().size();
  if (ctx.HasInput("Offsets")) {
    PADDLE_ENFORCE(ctx.Attr<std::vector<int>>("offsets").empty(),
                   "Input 'Offsets' and attribute 'offsets' should not be used "
                   "at the same time.");
    const auto* offsets_tensor = ctx.Input<Tensor>("Offsets");
    PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1);
    PADDLE_ENFORCE_EQ(
        rank, offsets_tensor->dims()[0],
        "Offsets size should be equal to dimension size of input tensor.");
    const int* offsets_data = offsets_tensor->data<int>();
    res.resize(rank);
    for (size_t i = 0; i < rank; ++i) {
      res[i] = offsets_data[i];
    }
  } else {
    res = ctx.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
        rank, res.size(),
        "Offsets size should be equal to dimension size of input tensor.");
  }
  return res;
}

56
template <typename T>
Y
Yu Yang 已提交
57
class CropKernel : public framework::OpKernel<T> {
58 59 60 61
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
W
wanghaoshuang 已提交
62
    const T* x_data = x->data<T>();
63
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
64 65
    auto x_stride = framework::stride(x->dims());
    auto out_stride = framework::stride(out->dims());
F
stash  
fengjiayi 已提交
66
    auto offsets = GetOffsets(context);
67
    int64_t offset = 0;
Q
qiaolongfei 已提交
68
    for (size_t i = 0; i < offsets.size(); ++i) {
69 70 71 72 73 74
      offset += (x_stride[i] * offsets[i]);
    }
    StridedMemcpy<T>(context.device_context(), x_data + offset, x_stride,
                     out->dims(), out_stride, out_data);
  }
};
W
wanghaoshuang 已提交
75

Q
QI JUN 已提交
76
template <typename DeviceContext, typename T, size_t D>
W
wanghaoshuang 已提交
77
void CropGradFunction(const framework::ExecutionContext& context) {
78
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
79
  if (d_x != nullptr) {
80
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
81
    d_x->mutable_data<T>(context.GetPlace());
F
stash  
fengjiayi 已提交
82
    auto offsets = GetOffsets(context);
83
    Eigen::array<std::pair<int, int>, D> paddings;
Q
qiaolongfei 已提交
84
    for (size_t i = 0; i < D; ++i) {
85
      paddings[i].first = offsets[i];
W
wanghaoshuang 已提交
86
      paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
87 88 89
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
Q
QI JUN 已提交
90 91
    d_x_tensor.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
92
        d_out_tensor.pad(paddings, 0);
W
wanghaoshuang 已提交
93 94 95
  }
}

Q
QI JUN 已提交
96
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
97
class CropGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
98 99
 public:
  void Compute(const framework::ExecutionContext& context) const override {
100
    size_t rank =
101
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
102
    switch (rank) {
W
wanghaoshuang 已提交
103
      case 1:
Q
QI JUN 已提交
104
        CropGradFunction<DeviceContext, T, 1>(context);
W
wanghaoshuang 已提交
105 106
        break;
      case 2:
Q
QI JUN 已提交
107
        CropGradFunction<DeviceContext, T, 2>(context);
W
wanghaoshuang 已提交
108 109
        break;
      case 3:
Q
QI JUN 已提交
110
        CropGradFunction<DeviceContext, T, 3>(context);
W
wanghaoshuang 已提交
111 112
        break;
      case 4:
Q
QI JUN 已提交
113
        CropGradFunction<DeviceContext, T, 4>(context);
W
wanghaoshuang 已提交
114 115
        break;
      case 5:
Q
QI JUN 已提交
116
        CropGradFunction<DeviceContext, T, 5>(context);
W
wanghaoshuang 已提交
117 118
        break;
      case 6:
Q
QI JUN 已提交
119
        CropGradFunction<DeviceContext, T, 6>(context);
W
wanghaoshuang 已提交
120 121
        break;
      default:
122 123
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
124 125 126 127 128 129
    }
  }
};

}  // namespace operators
}  // namespace paddle