optimizer.py 165.0 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
from collections import defaultdict
19

Q
Qiao Longfei 已提交
20
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
21
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
33
from .dygraph import base as imperative_base
34
from .dygraph import no_grad
35 36 37 38
from .dygraph.learning_rate_scheduler import LearningRateDecay
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
39
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
40
from .. import compat as cpt
41

42
__all__ = [
43 44 45 46
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
47 48 49 50
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer',
    'ExponentialMovingAverage', 'PipelineOptimizer', 'LookaheadOptimizer',
    'RecomputeOptimizer'
51
]
Q
Qiao Longfei 已提交
52 53 54 55 56 57


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
58 59
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
60 61
    """

62
    @imperative_base.no_grad
63 64 65 66 67 68
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
                 name=None):
        self._parameter_list = None
L
lujun 已提交
69
        if framework.in_dygraph_mode():
M
minqiyang 已提交
70 71 72 73 74
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
75 76 77 78
            if name is not None:
                self._name = unique_name.generate(name)
            else:
                self._name = unique_name.generate(self.__class__.__name__)
79 80 81 82 83 84
            if parameter_list is not None:
                self._parameter_list = parameter_list
            else:
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
M
minqiyang 已提交
85 86 87 88 89 90
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))
91
            self._name = name
M
minqiyang 已提交
92

D
dzhwinter 已提交
93
        self.regularization = regularization
94
        self._learning_rate = learning_rate
D
dzhwinter 已提交
95 96
        # the learning rate type should be inferenced from loss
        self._dtype = None
97
        # each program should have a independent learning rate
98
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
99
        self._learning_rate_map = dict()
100
        if isinstance(self._learning_rate, framework.Variable):
101 102
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
103 104 105 106 107
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
108
        self.helper = None
109
        self._opti_name_list = []
H
hong 已提交
110
        self._accumulators_holder = {}
111
        self._param_device_map = dict()
H
hong 已提交
112 113 114 115

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
116 117
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
118 119 120

        Args: None
        Return:
T
tianshuo78520a 已提交
121
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
122 123 124 125 126
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
127 128 129 130 131 132

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
133 134 135 136 137 138 139 140

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
        if isinstance(self._learning_rate, LearningRateDecay):
141
            var_tmp = None
L
Leo Chen 已提交
142
            if framework.in_dygraph_mode():
143 144
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')
L
Leo Chen 已提交
145 146
            else:
                var_temp = Variable(None, name='global_step', dtype='int32')
147

H
hong 已提交
148 149 150 151 152 153 154 155 156
            tensor.fill_constant(
                [1], "int32", self._learning_rate.step_num, out=var_temp)

            state_dict['global_step'] = var_temp
        return state_dict

    @framework.dygraph_only
    def set_dict(self, state_dict):
        '''
T
tianshuo78520a 已提交
157
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
158 159 160 161 162 163 164 165

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
166

H
hong 已提交
167
                with fluid.dygraph.guard():
168
                    emb = fluid.dygraph.Embedding([10, 10])
169

H
hong 已提交
170
                    state_dict = emb.state_dict()
171
                    fluid.save_dygraph(state_dict, "paddle_dy")
172

173 174
                    adam = fluid.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), 
                                                parameter_list=emb.parameters())
H
hong 已提交
175
                    state_dict = adam.state_dict()
176
                    fluid.save_dygraph(state_dict, "paddle_dy")
177

H
hong 已提交
178
                    para_state_dict, opti_state_dict = fluid.load_dygraph( "paddle_dy")
179

180
                    adam.set_dict(opti_state_dict)
H
hong 已提交
181 182 183 184 185 186 187 188 189

        '''

        if isinstance(self._learning_rate, LearningRateDecay):
            assert 'global_step' in state_dict, \
                    'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
            global_step = state_dict['global_step']

            if isinstance(global_step, core.VarBase):
190
                step_np = global_step
H
hong 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                step_np = np.array(step_np.value().get_tensor())
                assert step_np.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( step_np.shape )

                self._learning_rate.step_num = int(step_np[0])
            elif isinstance(global_step, Variable):
                step_np = global_step.numpy()
                assert step_np.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( step_np.shape )
                self._learning_rate.step_num = step_np[0]
            elif isinstance(global_step, np.ndarray):
                assert global_step.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( global_step.shape )
                self._learning_rate.step_num = global_step[0]
            else:
                raise RuntimeError(
                    "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                    type(global_step))

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
215
                var = var_tmp.value()
H
hong 已提交
216 217 218 219 220 221 222 223
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
224
                    load_para_np = load_para.numpy()
H
hong 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
240

241 242
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
243

Q
Qiao Longfei 已提交
244
    def _create_global_learning_rate(self):
245 246 247
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
248 249 250 251 252 253 254 255 256 257 258 259
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
260
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
261
            elif isinstance(self._learning_rate, LearningRateDecay):
262 263 264
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
265
                raise TypeError(
266 267
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
268
        else:
269 270 271 272
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
273 274 275 276 277 278
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
279

280 281 282 283 284 285 286 287
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
288

289 290 291 292
    @framework.dygraph_only
    def current_step_lr(self):
        """
        .. note::
T
tianshuo78520a 已提交
293
          **This API is ONLY available in Dygraph mode**
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
        if current_lr:
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
351
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
352 353 354 355
        """
        get global decayed learning rate
        :return:
        """
356 357
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
358
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
359

Q
Qiao Longfei 已提交
360 361 362 363 364
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

365 366 367 368
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
369 370
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
371
        else:
W
Wu Yi 已提交
372
            if param_lr == 1.0:
Y
yuyang18 已提交
373
                return self._global_learning_rate()
W
Wu Yi 已提交
374
            else:
X
Xin Pan 已提交
375 376 377
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
378
                    return self._global_learning_rate() * param_lr
379 380 381 382 383 384 385

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
386
        """
387 388
        pass

389
    def _finish_update(self, block, parameters_and_grads):
390 391 392 393 394 395 396 397
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
398
            None
399 400 401
        """
        pass

402 403 404 405 406
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
407
                         shape=None,
408
                         type=None,
409
                         device=None):
410 411 412 413 414 415 416 417 418
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
419 420
        if self._name is not None:
            name = self._name + "_" + name
421 422
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
423
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
424
                return self._accumulators[name][param.name]
425
            raise Exception("Accumulator {} already exists for parameter {}".
426
                            format(name, param.name))
427 428
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
429
        assert isinstance(self.helper, LayerHelper)
430 431 432 433 434

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
435
        var = self.helper.create_global_variable(
436
            name=var_name,
Q
Qiao Longfei 已提交
437
            persistable=True,
F
fengjiayi 已提交
438
            dtype=dtype or param.dtype,
439
            type=param.type if type is None else type,
H
hong 已提交
440 441
            shape=shape,
            belong_to_optimizer=True)
442 443 444 445 446
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
447 448 449 450 451 452 453

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
454
        self._accumulators[name][param.name] = var
455
        return var
456 457 458 459 460 461 462 463 464 465 466

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
467 468
        if self._name is not None:
            name = self._name + "_" + name
469 470 471 472 473 474
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
                    else:
                        self._param_device_map[param_name] = None

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

496
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
497 498 499
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
500
          parameters_and_grads(list(tuple(Variable, Variable))):
501
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
502 503

        Returns:
504
          return_op_list: a list of operators that will complete one step of
505 506 507
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
508
        """
509 510 511 512 513
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
514
        # for parameters and extend _finish_update method to add custom ops.
515

516
        # Allways called under program_guard use global block as loss block
517 518 519
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

520
        global_block = framework.default_main_program().global_block()
521 522 523 524 525 526 527 528 529
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
530
        self.helper = LayerHelper(self.__class__.__name__)
531
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
532
        self._create_accumulators(
533
            target_block,
C
chengduo 已提交
534
            [p[0] for p in parameters_and_grads if p[0].trainable])
535 536
        self._create_global_learning_rate()

M
minqiyang 已提交
537
        if framework.in_dygraph_mode():
538 539 540
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
541 542
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
543 544 545 546 547 548 549
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
550 551 552 553 554
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
555 556 557

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
558
        self._finish_update(target_block, parameters_and_grads)
559

560 561
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
562 563

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
564 565 566 567 568 569 570 571 572
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
573 574
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
590 591 592 593 594 595 596 597 598 599 600 601 602
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
603 604
        return new_param_grads, (table_param, table_grad), sgd_op

605 606 607
    def _append_dgc_ops(self, param_and_grad):
        pass

608 609 610 611 612 613 614
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
615
        The first part of ``minimize``, do auto-diff to append backward operations for
616 617 618
        the current program.

        Args:
619 620 621 622
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
623
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
624 625
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
626
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
627 628 629
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
630

631
        Return:
632 633
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
634

635
        Examples:
636
            See examples in ``apply_gradients``.
637
        """
638
        act_no_grad_set = None
L
Leo Chen 已提交
639
        if framework.in_dygraph_mode():
640
            pass
L
Leo Chen 已提交
641 642
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
643

C
chengduo 已提交
644
        self._dtype = loss.dtype
L
lujun 已提交
645
        if framework.in_dygraph_mode():
C
chengduo 已提交
646
            params_grads = []
647
            for param in self._parameter_list:
C
chengduo 已提交
648 649
                if not param.trainable:
                    continue
650
                if param._grad_ivar() is not None:
C
chengduo 已提交
651
                    # create gradient variable
652
                    grad_var = param._grad_ivar()
C
chengduo 已提交
653
                    params_grads.append((param, grad_var))
654
        else:
C
chengduo 已提交
655 656 657 658 659
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
660 661 662 663
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
C
chengduo 已提交
664 665
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
666
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
667 668 669 670
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads
671 672 673 674 675 676 677 678

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
679

680 681
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
682

683 684 685
        Examples:
            .. code-block:: python

686
                import paddle.fluid as fluid
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

C
chengduo 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
726
        if framework.in_dygraph_mode():
C
chengduo 已提交
727 728
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
729 730
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
731 732 733 734 735 736 737
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
738
    def _get_no_grad_set(self, loss, no_grad_set=None):
739
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
740 741 742 743 744 745 746 747
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

779
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
780 781
    def minimize(self,
                 loss,
782
                 startup_program=None,
Q
Qiao Longfei 已提交
783
                 parameter_list=None,
784 785
                 no_grad_set=None,
                 grad_clip=None):
786
        """
787
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
788

789
        Args:
790 791 792 793
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
794
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
795 796
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
797
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
798 799 800 801 802
                to be updated. The default value is None.
            grad_clip (GradClipBase, optional) : Gradient clipping strategy, static
                graph mode does not need to use this argument. Currently, this argument
                only supports gradient clipping in dygraph mode. In the future, this
                argument my be adjusted. The default value is None.
Q
Qiao Longfei 已提交
803

804
        Returns:
805 806 807 808 809 810
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
811
        """
C
chengduo 已提交
812
        assert isinstance(loss, Variable), "The loss should be an Variable."
C
chengduo 已提交
813 814 815 816 817
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
818 819 820 821 822

        if grad_clip is not None and framework.in_dygraph_mode():
            # TODO(hongyu): FIX later, this is only for dygraph, should be work for static mode
            params_grads = grad_clip(params_grads)

C
chengduo 已提交
823 824
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
825

Q
Qiao Longfei 已提交
826
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
827 828 829


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
830 831 832 833 834 835 836
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

837 838 839
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
840 841 842
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
843 844 845 846
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
847 848 849 850

    Examples:
        .. code-block:: python

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
876 877
    """

878 879 880 881 882
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
                 name=None):
Q
Qiao Longfei 已提交
883
        assert learning_rate is not None
Q
Qiao Longfei 已提交
884
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
885
            learning_rate=learning_rate,
886
            parameter_list=parameter_list,
X
Xin Pan 已提交
887 888
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
889 890
        self.type = "sgd"

891
    @no_grad
892
    def _append_optimize_op(self, block, param_and_grad):
893 894 895 896 897 898 899 900 901 902
        if framework.in_dygraph_mode():
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "LearningRate": [self._create_param_lr(param_and_grad)]
            }
            attrs = {}
            outputs = {'ParamOut': [param_and_grad[0]]}
            outs = core.ops.sgd(inputs, attrs, outputs)
            return outs['ParamOut'][0]
903

904
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
905 906 907 908 909 910
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
911
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
912
            },
M
minqiyang 已提交
913 914
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
915 916

        return sgd_op
917 918 919


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

934
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
935 936 937

        & else:

Q
qiaolongfei 已提交
938
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
939

940 941 942 943
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
944 945 946
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
947 948 949 950 951
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
952 953 954 955

    Examples:
        .. code-block:: python

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

981 982 983
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
984 985 986
    def __init__(self,
                 learning_rate,
                 momentum,
987
                 parameter_list=None,
X
Xin Pan 已提交
988 989 990
                 use_nesterov=False,
                 regularization=None,
                 name=None):
991 992
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
993
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
994
            learning_rate=learning_rate,
995
            parameter_list=parameter_list,
X
Xin Pan 已提交
996 997
            regularization=regularization,
            name=name)
998 999
        self.type = "momentum"
        self._momentum = momentum
1000
        self._use_nesterov = bool(use_nesterov)
1001 1002 1003 1004 1005

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1006
            self._add_accumulator(self._velocity_acc_str, p)
1007 1008 1009 1010 1011 1012

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
            "LearningRate": [self._create_param_lr(param_and_grad)]
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }

        if framework.in_dygraph_mode():
            core.ops.momentum(inputs, attrs, outputs)
            return None

1031 1032 1033
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1034 1035 1036
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1037
            stop_gradient=True)
1038 1039

        return momentum_op
1040 1041


1042
class DGCMomentumOptimizer(Optimizer):
1043
    """
1044
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1045

G
gongweibao 已提交
1046
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1047 1048
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1049
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1050 1051 1052

    Eventually, these gradients become large enough to be transmitted.

1053
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1054

G
gongweibao 已提交
1055
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1056 1057 1058 1059

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1060

1061 1062
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1063

1064
        2. Call momentum to optimize the cost.
1065 1066

    Args:
1067 1068
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1069
        momentum (float): Momentum factor.
G
gongweibao 已提交
1070
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1071 1072 1073 1074 1075 1076 1077
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
1078 1079 1080
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1081 1082 1083 1084 1085 1086 1087
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
        local_grad_clip_norm (float, optional): Local gradient clip norm value. Optional, default is None, represent no need clip.
        num_trainers (int, optional): The number of training nodes. Optional, default is None.
        regularization (WeightDecayRegularizer, optional): A Regularizer, such as \
            :ref:`api_fluid_regularizer_L2DecayRegularizer`. Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1088 1089 1090 1091

    Examples:
        .. code-block:: python

1092
            import paddle.fluid as fluid
1093
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1094 1095 1096 1097 1098
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1099 1100

    """
1101 1102
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1103 1104 1105 1106 1107 1108 1109

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1110
                 parameter_list=None,
1111 1112 1113 1114 1115
                 use_nesterov=False,
                 local_grad_clip_norm=None,
                 num_trainers=None,
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
1116 1117
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1118 1119 1120 1121

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1122 1123 1124 1125
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1126
            parameter_list=parameter_list,
1127 1128 1129 1130 1131
            regularization=regularization,
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1132

1133
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1134
        self._rampup_begin_step = rampup_begin_step
1135 1136
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1137

1138
        self._rampup_begin_step_var = None
1139
        self._global_step_var = None
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149
        self._local_grad_clip_norm = None
        self._clip_norm = None
        if local_grad_clip_norm is not None:
            assert isinstance(num_trainers, int)
            assert isinstance(local_grad_clip_norm, float)
            assert num_trainers > 0

            self._local_grad_clip_norm = local_grad_clip_norm
            self._num_trainers = num_trainers
1150
            self._clip_norm = local_grad_clip_norm * (num_trainers**-0.5)
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
        self._get_dgc_regularization_param()

    def _get_dgc_regularization_param(self):
        self.regular_coeff = 0.0
        self.regular_type = 0

        if self.regularization is not None:
            self.regular_coeff = self.regularization._regularization_coeff
            from .regularizer import L1Decay, L2Decay
            if isinstance(self.regularization, L1Decay):
                self.regular_type = 1
            elif isinstance(self.regularization, L2Decay):
                self.regular_type = 2
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1194 1195

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1196 1197 1198
            type = "momentum"
        else:
            type = "dgc_momentum"
1199 1200 1201 1202 1203
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1204
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1205 1206 1207

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1208 1209 1210 1211
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1212 1213 1214
            stop_gradient=True)
        return dgc_momentum_op

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1247 1248 1249 1250 1251 1252
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1253
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1254

1255 1256 1257
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1258 1259 1260 1261 1262
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1263
            name=core.dgc.kDGCRampUpBeginStepName(),
1264 1265 1266
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1267 1268
        self.helper = LayerHelper(self.__class__.__name__)

1269
        for param_var, grad_var in param_and_grads:
1270 1271 1272
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1273
            if not self._is_use_dgc(param_var, grad_var):
1274 1275
                continue

1276
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1277 1278 1279 1280 1281

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1282
                name=param_var.name + core.dgc.kDGCKName(),
1283 1284 1285 1286 1287 1288 1289
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1290
                name=param_var.name + core.dgc.kDGCEncodedName(),
1291 1292 1293
                value=0.0,
                force_cpu=False)

1294 1295 1296 1297 1298 1299 1300 1301
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._local_grad_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._clip_norm)
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1324
                         encoded_var, gather_var)
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1340 1341
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1342 1343 1344 1345 1346

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1347
            type="dgc_clip_by_norm",
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1360
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1361 1362

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1363
                encoded_var, gather_var):
1364 1365
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1366

1367 1368 1369 1370 1371 1372
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1373
                "Param": param_var,
1374 1375
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1376 1377 1378 1379 1380 1381
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1382 1383
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1384 1385 1386 1387 1388 1389
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1390
                "rampup_step": float(self._rampup_step),
1391 1392
                "regular_coeff": float(self.regular_coeff),
                "regular_type": int(self.regular_type),
1393 1394 1395 1396 1397 1398 1399 1400
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

        # DGC clip and regularization in local
        not_dgc_params_grads = append_gradient_clip_ops(not_dgc_params_grads)

        # Add regularization if any
        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

1448 1449 1450 1451 1452 1453
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
1454 1455 1456
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1457 1458 1459 1460
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1461 1462 1463 1464

    Examples:
        .. code-block:: python

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1481 1482 1483 1484 1485 1486 1487 1488
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1489
                 parameter_list=None,
1490 1491 1492 1493 1494 1495
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1496
            parameter_list=parameter_list,
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
1532 1533
            },
            stop_gradient=True)
1534 1535 1536 1537

        return momentum_op


1538
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1539
    """
1540 1541
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1542

1543
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1544 1545 1546 1547 1548 1549 1550

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1551 1552 1553 1554 1555 1556
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1557 1558 1559
    for numerical stability to avoid the division by zero error.

    Args:
1560 1561 1562 1563
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
1564 1565 1566
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1567 1568 1569 1570 1571 1572 1573
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1574 1575 1576 1577

    Examples:
        .. code-block:: python

1578
            import numpy as np
1579
            import paddle.fluid as fluid
1580 1581

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1582
            inp = fluid.data(name="inp", shape=[2, 2])
1583 1584
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1585
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1586 1587 1588 1589 1590 1591 1592
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1593 1594 1595
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1596 1597 1598
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1599
                 parameter_list=None,
X
Xin Pan 已提交
1600
                 regularization=None,
1601
                 name=None,
X
xuezhong 已提交
1602
                 initial_accumulator_value=0.0):
1603 1604
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1605
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1606
            learning_rate=learning_rate,
1607
            parameter_list=parameter_list,
X
Xin Pan 已提交
1608 1609
            regularization=regularization,
            name=name)
1610 1611
        self.type = "adagrad"
        self._epsilon = epsilon
1612
        self.initial_accumulator_value = initial_accumulator_value
1613 1614 1615 1616 1617

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1618 1619 1620 1621
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1622 1623 1624 1625 1626 1627

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1628
        # Create the adagrad optimizer op
1629 1630 1631 1632 1633 1634
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1635
                "LearningRate": self._create_param_lr(param_and_grad)
1636 1637 1638
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1639 1640
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1641 1642

        return adagrad_op
1643 1644 1645


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1646
    """
T
tianshuo78520a 已提交
1647
    The Adam optimizer uses an optimization described at the end
1648 1649 1650 1651 1652
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1667 1668
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1669
    Args:
1670 1671
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1672 1673
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1674
            The default value is 0.9.
1675 1676
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1677 1678 1679
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
1680 1681 1682
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1695 1696 1697 1698

    Examples:
        .. code-block:: python

1699 1700 1701 1702 1703 1704
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1705 1706
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1740
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1769
                                                    beta1=beta1,
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1781 1782 1783
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1784 1785
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1786 1787 1788 1789 1790

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1791
                 epsilon=1e-8,
1792
                 parameter_list=None,
X
Xin Pan 已提交
1793
                 regularization=None,
Q
Qiao Longfei 已提交
1794
                 name=None,
Q
Qiao Longfei 已提交
1795
                 lazy_mode=False):
1796 1797 1798 1799
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1800
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1801
            learning_rate=learning_rate,
1802
            parameter_list=parameter_list,
X
Xin Pan 已提交
1803 1804
            regularization=regularization,
            name=name)
1805 1806 1807 1808
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1809
        self._lazy_mode = lazy_mode
1810 1811 1812 1813 1814 1815

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1816 1817
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1818 1819 1820
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
1821 1822
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
1823
                shape=[1],
1824
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
1825 1826 1827
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
1828 1829
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
1830
                shape=[1],
1831
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
1832 1833 1834 1835 1836 1837 1838 1839

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1840 1841 1842 1843 1844
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

1845
        # create the adam optimize op
1846
        inputs = {
1847 1848 1849 1850 1851 1852 1853
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [self._create_param_lr(param_and_grad)],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
1854 1855
        }
        outputs = {
1856 1857 1858 1859 1860
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

1877 1878 1879 1880
        if framework.in_dygraph_mode():
            core.ops.adam(inputs, attrs, outputs)
            return None

1881 1882
        adam_op = block.append_op(
            type=self.type,
1883 1884 1885
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1886
            stop_gradient=True)
1887 1888 1889

        return adam_op

1890 1891

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1892
    """
1893 1894 1895 1896
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
1897

1898
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

1912
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
1926 1927 1928
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1929 1930 1931 1932 1933 1934 1935 1936
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
1951
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
1952 1953
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
1954
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
1955 1956 1957 1958 1959 1960 1961 1962 1963
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
1964 1965 1966
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
1967
    _beta1_pow_acc_str = "beta1_pow_acc"
1968 1969 1970 1971 1972

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1973
                 epsilon=1e-8,
1974
                 parameter_list=None,
X
Xin Pan 已提交
1975 1976
                 regularization=None,
                 name=None):
1977 1978 1979 1980
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1981
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
1982
            learning_rate=learning_rate,
1983
            parameter_list=parameter_list,
X
Xin Pan 已提交
1984 1985
            regularization=regularization,
            name=name)
1986 1987 1988 1989 1990 1991 1992 1993
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
1994 1995
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
1996 1997 1998 1999 2000
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2001 2002 2003 2004 2005 2006 2007

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2008 2009
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2010 2011 2012 2013 2014 2015
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2016
                "LearningRate": self._create_param_lr(param_and_grad),
2017 2018
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2019
                "Beta1Pow": beta1_pow_acc
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2030 2031
            },
            stop_gradient=True)
2032 2033 2034

        return adamax_op

2035
    def _finish_update(self, block, parameters_and_grads):
2036 2037 2038
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2039
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2040
            if grad is None or param.trainable is False:
2041
                continue
X
Xin Pan 已提交
2042 2043
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2044 2045
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2046
                block.append_op(
2047 2048 2049
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2050 2051
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2052 2053


2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
2092 2093 2094
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2095 2096 2097 2098 2099 2100 2101 2102
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2103 2104
                 sigma=1e-8,
                 parameter_list=None):
2105 2106 2107 2108
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2109 2110
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2111 2112 2113 2114
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2115 2116 2117 2118 2119 2120 2121
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2122 2123 2124 2125 2126

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2127 2128 2129
        if self._seed == None:
            self._seed = 0

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2141 2142
                "sigma": self._sigma,
                "seed": self._seed
2143 2144 2145 2146 2147 2148
            },
            stop_gradient=True)

        return dpsgd_op


2149
class DecayedAdagradOptimizer(Optimizer):
2150
    """
2151 2152 2153
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2154

2155
    The parameter ``param_out`` update rule with gradient ``grad``:
2156 2157 2158 2159 2160 2161 2162

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2163 2164 2165 2166
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2167 2168 2169
    stability to avoid the division by zero error.

    Args:
2170 2171 2172 2173 2174
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
2175 2176 2177
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2178 2179 2180 2181 2182 2183 2184 2185
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2186 2187 2188 2189

    Examples:
        .. code-block:: python

2190 2191
            import paddle.fluid as fluid

2192 2193 2194 2195
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2196
            optimizer.minimize(cost)
2197 2198 2199
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2200 2201 2202 2203
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2204
                 parameter_list=None,
X
Xin Pan 已提交
2205 2206
                 regularization=None,
                 name=None):
2207 2208 2209 2210
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2211
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2212
            learning_rate=learning_rate,
2213
            parameter_list=parameter_list,
X
Xin Pan 已提交
2214 2215
            regularization=regularization,
            name=name)
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2243 2244
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2245
            stop_gradient=True)
2246 2247

        return decayed_adagrad_op
2248 2249


2250
class AdadeltaOptimizer(Optimizer):
2251
    """
Z
Zeng Jinle 已提交
2252
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2253

Z
Zeng Jinle 已提交
2254
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2255 2256 2257
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2258

Z
Zeng Jinle 已提交
2259 2260
    .. math::

Z
Zeng Jinle 已提交
2261
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2262

Z
Zeng Jinle 已提交
2263
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2264

Z
Zeng Jinle 已提交
2265
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2266 2267

    Args:
Z
Zeng Jinle 已提交
2268 2269 2270
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
2271 2272 2273
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
Z
Zeng Jinle 已提交
2274 2275 2276
        regularization (WeightDecayRegularizer, optional): A Regularizer, such as
                fluid.regularizer.L2DecayRegularizer. Default None, meaning that there is no
                regularization.
2277 2278 2279
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2280 2281 2282 2283

    Examples:
        .. code-block:: python

2284
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2285

2286
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2287 2288
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2289 2290
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2291

Z
Zeng Jinle 已提交
2292 2293 2294 2295
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2296
    """
2297

2298 2299 2300
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2301 2302 2303 2304
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2305
                 parameter_list=None,
X
Xin Pan 已提交
2306 2307
                 regularization=None,
                 name=None):
2308 2309 2310 2311 2312 2313
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2314
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2315
            learning_rate=learning_rate,
2316
            parameter_list=parameter_list,
X
Xin Pan 已提交
2317 2318
            regularization=regularization,
            name=name)
2319 2320 2321 2322 2323
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2324 2325
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2326 2327 2328 2329 2330 2331

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2332 2333
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2355 2356
                   "rho": self._rho},
            stop_gradient=True)
2357 2358 2359 2360

        return adadelta_op


Q
qingqing01 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2371
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2372 2373 2374 2375

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2376
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2377 2378 2379 2380 2381 2382

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2383
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2384

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2399 2400 2401 2402
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2403
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2404 2405 2406 2407 2408
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2409 2410 2411
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2412
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2413
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2414
        momentum(float): :math:`\\beta` in equation is the momentum term,
2415
            default is 0.0.
2416 2417 2418 2419
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
2420 2421 2422
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2423 2424 2425 2426
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2427 2428 2429 2430 2431 2432 2433

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2459 2460 2461 2462
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2463
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2464 2465 2466 2467 2468 2469

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2470
                 centered=False,
2471
                 parameter_list=None,
X
Xin Pan 已提交
2472 2473
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
2474
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2475
            learning_rate=learning_rate,
2476
            parameter_list=parameter_list,
X
Xin Pan 已提交
2477 2478
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2492
        self._centered = centered
Q
qingqing01 已提交
2493 2494 2495 2496 2497 2498 2499 2500

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2501
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2511 2512
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2513 2514 2515 2516 2517 2518 2519
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2520
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2521 2522 2523 2524 2525
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2526 2527
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2528 2529 2530 2531
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2532 2533
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2534 2535
            },
            stop_gradient=True)
Q
qingqing01 已提交
2536 2537 2538 2539

        return rmsprop_op


Q
qiaolongfei 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2580 2581 2582 2583 2584
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
2585 2586 2587
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2588 2589 2590 2591
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2592 2593 2594 2595 2596 2597 2598

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2623

2624
    NOTE:
C
chengduo 已提交
2625
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2626 2627 2628 2629 2630
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2631 2632 2633 2634 2635
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2636
                 parameter_list=None,
X
Xin Pan 已提交
2637 2638
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
2639
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2640
            learning_rate=learning_rate,
2641
            parameter_list=parameter_list,
X
Xin Pan 已提交
2642 2643
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
2684 2685
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2686 2687 2688 2689

        return ftrl_op


Y
Yibing Liu 已提交
2690 2691 2692 2693 2694 2695
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2696 2697
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2698 2699 2700 2701 2702

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2703
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2704

Y
Yibing Liu 已提交
2705
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2706

Y
Yibing Liu 已提交
2707
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2708

Y
Yibing Liu 已提交
2709
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2710 2711 2712 2713 2714 2715


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2716 2717 2718 2719 2720 2721 2722 2723
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
2724 2725 2726
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
Y
Yibing Liu 已提交
2727 2728 2729 2730 2731 2732 2733
        regularization (Regularizer|None): A Regularizer, such as
           fluid.regularizer.L1DecayRegularizer. Default None.
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
2734 2735 2736 2737 2738 2739

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
2740
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
2741 2742 2743
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
2744 2745 2746 2747 2748
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
2749 2750 2751 2752
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
2753
    # these two not used in op temporarily
Y
Yibing Liu 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
2763
                 parameter_list=None,
Y
Yibing Liu 已提交
2764
                 regularization=None,
Y
Yibing Liu 已提交
2765
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
2766 2767 2768 2769 2770 2771 2772 2773
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
2774
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
2775 2776 2777 2778 2779 2780 2781
            regularization=regularization,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
2782
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
2783 2784 2785

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2786
        block.program._use_lamb = True
Y
Yibing Liu 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
2797 2798 2799 2800 2801 2802
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
2824
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
2825 2826 2827 2828 2829 2830
            },
            stop_gradient=True)

        return lamb_op


2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
2844
Dpsgd = DpsgdOptimizer
2845
DecayedAdagrad = DecayedAdagradOptimizer
2846
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
2847
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
2848
Ftrl = FtrlOptimizer
2849
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
2850
Lamb = LambOptimizer
2851 2852 2853


class ModelAverage(Optimizer):
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
    """
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
2883 2884

    Args:
2885 2886 2887 2888 2889 2890 2891 2892
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
2893

2894
    Examples:
Q
qiaolongfei 已提交
2895 2896 2897

      .. code-block:: python

2898 2899 2900 2901 2902 2903
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
2904

2905 2906 2907 2908
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
2909
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2910 2911 2912 2913 2914 2915 2916 2917
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
2918
                                                         max_average_window=12500)
2919 2920

            exe.run(startup_program)
2921 2922 2923 2924 2925
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
2926 2927

            # apply ModelAverage
2928
            with model_average.apply(exe):
2929 2930 2931 2932
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
2933 2934 2935
    """

    def __init__(self,
W
wanghaoshuang 已提交
2936
                 average_window_rate,
2937 2938
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
2939 2940
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
2941 2942
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
2943 2944
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
2945 2946 2947
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
2948

2949
        self.params_grads = []
2950 2951
        for param in framework.default_main_program().global_block(
        ).all_parameters():
2952
            if param.do_model_average != False:
2953
                grad = param.block.create_var(
2954 2955
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
2956 2957
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
2958
                    stop_gradient=True)
2959
                self.params_grads.append((param, grad))
2960

2961
        for param, grad in self.params_grads:
2962 2963
            if grad is None:
                continue
X
Xin Pan 已提交
2964 2965
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
2966
                self._append_average_accumulate_op(param)
2967

2968 2969 2970 2971
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
2972
                self._add_average_apply_op(block, param_grad)
2973 2974 2975 2976 2977

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
2978
                self._add_average_restore_op(block, param_grad)
2979

2980
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
2981 2982 2983 2984 2985 2986
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
2987
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
2988
        old_num_accumulates = block._clone_variable(
2989
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
2990
        num_updates = block._clone_variable(
2991 2992 2993 2994 2995 2996
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
2997 2998 2999 3000
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3001
        ops._elementwise_div(x=sum, y=tmp, out=param)
3002 3003

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3004 3005
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3043 3044
            },
            stop_gradient=True)
3045

S
rename  
sneaxiy 已提交
3046
    @signature_safe_contextmanager
3047
    def apply(self, executor, need_restore=True):
3048 3049
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3050 3051

        Args:
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3096
        """
3097 3098 3099 3100 3101 3102
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3103 3104

    def restore(self, executor):
3105 3106
        """
        Restore ``Parameter`` values of current model.
3107 3108
        
        Args:
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3153
        """
3154
        executor.run(self.restore_program)
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164


class ExponentialMovingAverage(object):
    """
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3165
        \\text{EMA}_0 & = 0
3166

3167 3168
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3169 3170 3171 3172
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3194 3195 3196


    Args:
Y
Yibing Liu 已提交
3197 3198 3199 3200 3201 3202 3203
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3204 3205 3206 3207 3208


    Examples:

	.. code-block:: python
3209 3210 3211 3212 3213

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3214
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3215 3216 3217 3218 3219 3220 3221 3222
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3223
	    global_steps = fluid.layers.autoincreased_step_counter()
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3253 3254
    """

3255
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3256 3257 3258
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3259
        self._decay = decay
3260
        self._thres_steps = thres_steps
3261
        self._name = name if name is not None else ''
3262 3263
        self._decay_var = self._get_ema_decay()

3264
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3265
        self._params_tmps = []
3266
        for param in default_main_program().global_block().all_parameters():
3267 3268 3269 3270 3271 3272 3273
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3274
                self._params_tmps.append((param, tmp))
3275

Y
Yibing Liu 已提交
3276 3277
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3278 3279
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3280
                self._ema_vars[param.name] = self._create_ema_vars(param)
3281 3282 3283 3284

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3285
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3286
            for param, tmp in self._params_tmps:
3287 3288
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3289
                ema = block._clone_variable(self._ema_vars[param.name])
3290
                layers.assign(input=param, output=tmp)
3291
                # bias correction
3292 3293 3294
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
                        layers.assign(output=ema, input=ema / (1.0 - decay_pow))
3295 3296 3297 3298 3299
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3300
            for param, tmp in self._params_tmps:
3301 3302 3303 3304
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3327 3328 3329 3330 3331 3332 3333
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3334
        decay_var = block._clone_variable(self._decay_var)
3335 3336
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3337

Y
Yibing Liu 已提交
3338
    def _create_ema_vars(self, param):
3339 3340 3341 3342 3343 3344 3345 3346 3347
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3348 3349 3350 3351 3352
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3353 3354
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3355
        param_master_emas = []
Y
Yibing Liu 已提交
3356 3357 3358 3359
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3360
                if param.name + '.master' in self._ema_vars:
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3378

3379 3380 3381 3382 3383 3384 3385
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3386 3387
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3403 3404 3405


class PipelineOptimizer(object):
3406 3407
    """
    Pipeline Optimizer
H
hutuxian 已提交
3408

T
tianshuo78520a 已提交
3409
    Train with pipeline mode. The program will be split by cut_list. 
H
hutuxian 已提交
3410 3411

    If the len of cut_list is k, then the whole program (including \
T
tianshuo78520a 已提交
3412
    backward part) will be split to 2*k-1 sections. 
H
hutuxian 已提交
3413 3414 3415 3416
    
    So the length of place_list and concurrency_list must be also 2*k-1.

    Note: Though the asynchronous mode is applied in pipeline training to speed up, \
3417
    the final performance depends on the training progress of each pipeline heavily.
H
hutuxian 已提交
3418 3419 3420

    And we will try the synchronous mode in the future.

3421
    Args:
H
hutuxian 已提交
3422 3423 3424 3425
        optimizer (Optimizer): The based optimizer, such as SGD.
        cut_list (list of Variable list): The cut variable of the main_program.
        place_list (list of Place): The place where the section will run on.
        concurrency_list (list of int): The concurrency degree.
3426 3427
        queue_size (int): Each section will consume scopes from its in-scope queue 
                        and produce scopes to out-scope queue. And this parameter 
H
hutuxian 已提交
3428 3429 3430 3431
                        specify the scope queue size. [Optional. Default: 30].
        sync_steps (int): The synchronization steps between different cards. [Optional. Default: 1].
        start_cpu_core_id (int): specify the first cpu core id. [Optional. Default:0].

3432 3433
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3434

3435
            import paddle.fluid as fluid
H
hutuxian 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
            y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
            emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
            emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)
            concat = layers.concat([emb_x, emb_y], axis=1)
            fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
            loss = layers.reduce_mean(fc)
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer,
                    cut_list=[[emb_x, emb_y], [loss]],
                    place_list=[fluid.CPUPlace(), fluid.CUDAPlace(0), fluid.CPUPlace()],
                    concurrency_list=[1, 1, 4],
                    queue_size=2,
                    sync_steps=1,
                    )
            optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
            dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
            dataset.set_use_var([x,y])
            dataset.set_batch_size(batch_size)
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                        fluid.default_main_program(),
                        dataset,
                        thread=2,
                        debug=False,
                        fetch_list=[],
                        fetch_info=[],
                        print_period=1)
3470 3471
    """

H
hutuxian 已提交
3472 3473 3474 3475 3476 3477 3478 3479
    def __init__(self,
                 optimizer,
                 cut_list=None,
                 place_list=None,
                 concurrency_list=None,
                 queue_size=30,
                 sync_steps=1,
                 start_cpu_core_id=0):
Z
zhongpu 已提交
3480 3481
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
H
hutuxian 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490
        # TODO: check properties
        self._optimizer = optimizer
        self._cut_list = cut_list
        self._place_list = place_list
        self._concurrency_list = concurrency_list
        self._queue_size = queue_size
        self._sync_steps = sync_steps
        self._start_cpu_core_id = start_cpu_core_id

H
hutuxian 已提交
3491
    def _create_vars(self, block, main_program):
H
hutuxian 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
                if var in used_var_set:
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
                block._clone_variable(source_var, False)

H
hutuxian 已提交
3503
    def _extract_section_opt_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
        """
        Extract opt ops in the given section
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if _some_in_set_(op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3519
    def _find_input_output(self, ops, name, is_forward=True):
H
hutuxian 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
        """
        Find the inputs or outputs of a section
        """
        all_set = set()
        part_set = set()
        for op in ops:
            if is_forward:
                part_set.update(op.desc.output_arg_names())
            else:
                part_set.update(op.desc.input_arg_names())
            all_set.update(op.desc.output_arg_names())
            all_set.update(op.desc.input_arg_names())
        return all_set - part_set

H
hutuxian 已提交
3534
    def _find_persistable_vars(self, ops, whole_parameters):
H
hutuxian 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
        """
        find the persistable input vars in current section
        """
        res = set()
        for op in ops:
            vars = op.desc.input_arg_names()
            for var in vars:
                if var in whole_parameters:
                    res.add(var)
        return res

    def _is_opt_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) & int(optimize_role) != 0:
            return True
        return False

    def _is_lr_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.LRSched
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

H
hutuxian 已提交
3562
    def _extract_section_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
        """
        Extract ops in the given section 
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if not self._is_opt_role_op(op) and _some_in_set_(
                    op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            elif op.desc.type() == "print" and op.desc.input_arg_names()[
                    0] in output_names:
                continue
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3582 3583
    def _find_section_opt(self, ops, params):
        res = self._extract_section_opt_ops(ops, params)
H
hutuxian 已提交
3584 3585
        return res

H
hutuxian 已提交
3586
    def _split_program(self, main_program, cut_list):
H
hutuxian 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
        programs = []
        block = main_program.block(0)
        whole_parameters = [e.name for e in block.all_parameters()]
        cut_var_names = []
        cut_len = len(cut_list)
        sec_params = []
        for i, cut_vars in enumerate(cut_list[:-1]):
            cut_var_names.append([cut_var.name for cut_var in cut_vars])
        for i, cut_vars in reversed(list(enumerate(cut_list[:-1]))):
            cut_var_names.append(
                [_append_grad_suffix_(cut_var.name) for cut_var in cut_vars])
            if i == 0:
                cut_var_names[-1] += [var.name for var in cut_list[-1]]
        ops = block.ops[:]
        for i, cut_vars in enumerate(cut_var_names):
            program = {
                "program": Program(),
                "input_set": set(),
                "output_set": set()
            }
H
hutuxian 已提交
3607
            cur_ops = self._extract_section_ops(ops, cut_vars)
H
hutuxian 已提交
3608 3609 3610 3611 3612 3613
            if i == 0:
                for op in ops:
                    if self._is_lr_role_op(op):
                        cur_ops.append(op)
            #prevent inplace in/out
            program["input_set"].update(
H
hutuxian 已提交
3614
                self._find_input_output(
H
hutuxian 已提交
3615 3616 3617 3618 3619 3620
                    cur_ops, [], is_forward=True))
            for e in cur_ops:
                ops.remove(e)

            if i < cut_len:
                sec_params.append(
H
hutuxian 已提交
3621
                    self._find_persistable_vars(cur_ops, whole_parameters))
H
hutuxian 已提交
3622
            if i >= cut_len - 1:
H
hutuxian 已提交
3623 3624
                opt_ops = self._find_section_opt(
                    ops, sec_params[2 * cut_len - 2 - i])
H
hutuxian 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634

                for e in opt_ops:
                    ops.remove(e)
                cur_ops += opt_ops

            op_descs = [op.desc for op in cur_ops]
            for op_desc in op_descs:
                ap_op = program["program"].block(0).desc.append_op()
                ap_op.copy_from(op_desc)
            program["input_set"].update(
H
hutuxian 已提交
3635
                self._find_input_output(
H
hutuxian 已提交
3636 3637 3638
                    cur_ops, cut_vars, is_forward=True))
            program["input_set"].update(sec_params[min(i, 2 * cut_len - 2 - i)])
            program["output_set"].update(
H
hutuxian 已提交
3639
                self._find_input_output(
H
hutuxian 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
                    cur_ops, cut_vars, is_forward=False))
            programs.append(program)
        program = {
            "program": Program(),
            "input_set": set(),
            "output_set": set()
        }
        op_descs = [op.desc for op in ops]
        for op_desc in op_descs:
            ap_op = program["program"].block(0).desc.append_op()
            ap_op.copy_from(op_desc)
        program["input_set"].update(
            [cut_var.name + "@GRAD" for cut_var in cut_list[0]])
        program["input_set"].update(
H
hutuxian 已提交
3654
            self._find_input_output(
H
hutuxian 已提交
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
                ops, [], is_forward=True))
        program["input_set"].update(sec_params[0])
        programs.append(program)
        inputs = set()
        for program in reversed(list(programs)):
            output_list = list(program["output_set"])
            for output in output_list:
                if output not in inputs:
                    program["output_set"].remove(output)
            inputs.update(program["input_set"])
        return programs

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        self._optimizer.minimize(loss, startup_program, parameter_list,
                                 no_grad_set)
        program = loss.block.program
H
hutuxian 已提交
3675 3676 3677 3678 3679 3680 3681 3682
        if len(self._cut_list) == 0:
            program_list = []
            ptmp = {"program": program, "input_set": set(), "output_set": set()}
            program_list.append(ptmp)
        else:
            program_list = self._split_program(program, self._cut_list)
            for p in program_list:
                self._create_vars(p["program"].block(0), program)
H
hutuxian 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
        whole_parameters = [e.name for e in program.block(0).all_parameters()]
        param_need_sync = []
        for i, section_p in enumerate(program_list):
            if not isinstance(self._place_list[i], core.CUDAPlace):
                continue
            section_var = [e for e in section_p["program"].block(0).vars]
            for p in section_var:
                if p in whole_parameters:
                    param_need_sync.append(p)
        program._pipeline_opt = {
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
            "section_program_list": program_list,
            "place_list": self._place_list,
            "concurrency_list": self._concurrency_list,
            "queue_size": self._queue_size,
            "start_cpu_core_id": self._start_cpu_core_id,
            "sync_steps": self._sync_steps,
            "param_need_sync": param_need_sync
        }
M
mapingshuo 已提交
3703 3704


M
mapingshuo 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
class RecomputeOptimizer(Optimizer):
    """
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
3767 3768
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
        self._optimizer = optimizer
        self._checkpoints = None

    def _set_checkpoints(self, checkpoints):
        self._checkpoints = checkpoints

    def load(self, stat_dict):
        """
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
            stat_dict: the dict load by load_persistable method

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
                    stat_dict = {}
                    sgd.load(stat_dict)
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
                    no_grad_set=None,
                    checkpoints=[fc_1, pred])

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None,
                 checkpoints=None):
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
3874 3875
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
                    no_grad_set=None,
                    checkpoints=[fc_1, pred])
                print("Finished backward")
        """

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
            params_grads = append_backward(
                loss,
                parameter_list,
                no_grad_set,
                checkpoints=self._checkpoints)
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.

        Examples:
            .. code-block:: python
M
mapingshuo 已提交
3935

M
mapingshuo 已提交
3936 3937 3938 3939 3940 3941 3942
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
3943
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
                    no_grad_set=None,
                    checkpoints=[fc_1, pred])
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
M
mapingshuo 已提交
3963

M
mapingshuo 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 grad_clip=None):

        assert (isinstance(loss, Variable)), "The loss should be an Variable."
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
            checkpoints=self._checkpoints)

        if grad_clip:
            # TODO(guru4elephant): should add grad_clip for static graph
            pass

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
class LookaheadOptimizer(object):
    """
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
4055 4056
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

        # Add Var k to main prog and startup prog
        k = layers.create_global_var(
            name="lookahead_k",
            shape=[1],
            value=int(self.k),
            dtype='int32',
            persistable=True)

        # Add Var alpha to main prog and startup prog
        alpha = layers.create_global_var(
            name="lookahead_alpha",
            shape=[1],
            value=float(self.alpha),
            dtype='float32',
            persistable=True)

        # Add Var step
        step = layers.create_global_var(
            name="lookahead_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True)
        layers.increment(x=step, value=1.0, in_place=True)

        # lookahead
        zero_var = layers.fill_constant(shape=[1], dtype='float32', value=0.0)

        one_var = layers.fill_constant(shape=[1], dtype='float32', value=1.0)

        mod = layers.elementwise_mod(step, k)
        with layers.control_flow.Switch() as switch:
            with switch.case(mod == zero_var):
                for param_name in params:
                    fast_var = main_block.var(param_name)
                    slow_var = param_to_slow[param_name]
                    tmp_var = layers.elementwise_add(
                        layers.elementwise_mul(fast_var, alpha),
                        layers.elementwise_mul(
                            slow_var, layers.elementwise_sub(one_var, alpha)))
                    layers.assign(input=tmp_var, output=slow_var)
                    layers.assign(input=tmp_var, output=fast_var)
            with switch.default():
                pass
        return mini_out