fake_quantize_op.h 14.9 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Z
Zhen Wang 已提交
20
#include "paddle/fluid/framework/tensor_util.h"
21
#include "paddle/fluid/memory/malloc.h"
视言's avatar
视言 已提交
22
#include "paddle/fluid/operators/math/blas.h"
23
#include "paddle/fluid/platform/transform.h"
24
#include "paddle/pten/core/hostdevice.h"
视言's avatar
视言 已提交
25 26 27 28

namespace paddle {
namespace operators {

29 30
template <typename T>
inline HOSTDEVICE T inverse(T s) {
W
whs 已提交
31 32 33
  T eps = static_cast<T>(1e-6);
  T one = static_cast<T>(1.0);
  return s <= static_cast<T>(1e-30) ? one / (s + eps) : one / s;
34 35
}

36 37 38 39
template <typename DeviceContext, typename T>
struct FindAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const T* in, const int num, T* out);
};
视言's avatar
视言 已提交
40 41

template <typename DeviceContext, typename T>
42 43 44 45 46 47
struct ClipAndFakeQuantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  framework::Tensor* out);
};

48 49 50 51 52 53 54
template <typename DeviceContext, typename T>
struct ClipAndFakeQuantDequantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  framework::Tensor* out);
};

55 56 57 58 59 60 61 62
template <typename DeviceContext, typename T>
struct FindRangeAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale);
};

63 64
template <typename DeviceContext, typename T>
struct FindChannelAbsMaxFunctor {
65 66
  void operator()(const DeviceContext& ctx, const framework::Tensor& in_tensor,
                  const int quant_axis, T* out_abs_max);
67 68 69 70 71 72
};

template <typename DeviceContext, typename T>
struct ChannelClipAndFakeQuantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
73
                  const int quant_axis, framework::Tensor* out);
74 75
};

H
huangxu96 已提交
76 77 78 79 80 81 82
template <typename DeviceContext, typename T>
struct ChannelClipFakeQuantDequantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  const int quant_axis, framework::Tensor* out);
};

83 84 85 86 87 88 89 90 91
template <typename DeviceContext, typename T>
struct FindMovingAverageAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in_accum,
                  const framework::Tensor& in_state,
                  const framework::Tensor& cur_scale,
                  framework::Tensor* out_state, framework::Tensor* out_accum,
                  framework::Tensor* out_scale);
};

92
template <typename DeviceContext, typename T>
93
class FakeAbsMaxKernelBase : public framework::OpKernel<T> {
视言's avatar
视言 已提交
94
 public:
95 96 97 98 99 100 101 102 103 104 105 106
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    T* out_s = out_scale->mutable_data<T>(context.GetPlace());

    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;

    auto& dev_ctx = context.template device_context<DeviceContext>();
    const T* in_data = in->data<T>();
    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in_data, in->numel(), out_s);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, out);
  }

  virtual ~FakeAbsMaxKernelBase() = default;

 protected:
  virtual void RunClipFunctor(const DeviceContext& dev_ctx,
                              const framework::Tensor& in,
                              const framework::Tensor& scale, int bin_cnt,
                              framework::Tensor* out) const = 0;
};

template <typename DeviceContext, typename T>
class FakeQuantizeAbsMaxKernel : public FakeAbsMaxKernelBase<DeviceContext, T> {
 protected:
  void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
                      const framework::Tensor& scale, int bin_cnt,
                      framework::Tensor* out) const override {
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, in, scale, bin_cnt,
                                                out);
  }
};

template <typename DeviceContext, typename T>
class FakeQuantizeDequantizeAbsMaxKernel
    : public FakeAbsMaxKernelBase<DeviceContext, T> {
 protected:
  void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
                      const framework::Tensor& scale, int bin_cnt,
                      framework::Tensor* out) const override {
    ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(dev_ctx, in, scale,
                                                       bin_cnt, out);
视言's avatar
视言 已提交
139
  }
140
};
视言's avatar
视言 已提交
141

Z
Zhen Wang 已提交
142 143 144 145 146 147 148
template <typename DeviceContext, typename T>
class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");

    auto* out = context.Output<framework::Tensor>("Out");
149
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
Z
Zhen Wang 已提交
150 151 152 153
    out->mutable_data<T>(context.GetPlace());

    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
154
    int quant_axis = context.Attr<int>("quant_axis");
155
    bool is_test = context.Attr<bool>("is_test");
Z
Zhen Wang 已提交
156 157

    auto& dev_ctx = context.template device_context<DeviceContext>();
158 159 160 161 162
    if (!is_test) {
      T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
      FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
                                                   out_scale_data);
    }
163
    ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
164
        dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
Z
Zhen Wang 已提交
165 166 167
  }
};

H
huangxu96 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
template <typename DeviceContext, typename T>
class FakeChannelWiseQuantizeDequantizeAbsMaxKernel
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
    out->mutable_data<T>(dev_ctx.GetPlace());

    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
    int quant_axis = context.Attr<int>("quant_axis");

    FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
                                                 out_scale_data);

    ChannelClipFakeQuantDequantFunctor<DeviceContext, T>()(
        dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
  }
};

192 193 194 195
template <typename DeviceContext, typename T>
class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
视言's avatar
视言 已提交
196
    auto* in = context.Input<framework::Tensor>("X");
197
    auto* in_scale = context.Input<framework::Tensor>("InScale");
视言's avatar
视言 已提交
198

199 200 201 202
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    bool is_test = context.Attr<bool>("is_test");
视言's avatar
视言 已提交
203 204
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
205
    auto& dev_ctx = context.template device_context<DeviceContext>();
视言's avatar
视言 已提交
206

207 208 209 210 211
    // testing
    if (is_test) {
      ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
                                                  bin_cnt, out);
      return;
视言's avatar
视言 已提交
212 213
    }

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    // training
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    auto* out_scales = context.Output<framework::Tensor>("OutScales");
    auto* iter = context.Input<framework::Tensor>("Iter");

    int window_size = context.Attr<int>("window_size");
    out_scale->mutable_data<T>(context.GetPlace());

    framework::Tensor cur_scale;
    T* cur_scale_data = cur_scale.mutable_data<T>({1}, context.GetPlace());
    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);
    FindRangeAbsMaxFunctor<DeviceContext, T>()(dev_ctx, cur_scale, *in_scale,
                                               *iter, window_size, out_scales,
                                               out_scale);
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
                                                bin_cnt, out);
视言's avatar
视言 已提交
231 232 233
  }
};

234
template <typename DeviceContext, typename T>
235
class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
236 237 238 239 240 241 242 243 244 245 246 247 248 249
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* in_scale = context.Input<framework::Tensor>("InScale");
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    bool is_test = context.Attr<bool>("is_test");
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    // testing
    if (is_test) {
250
      RunClipFunctor(dev_ctx, *in, *in_scale, bin_cnt, out);
251 252 253 254 255 256
      return;
    }

    // training
    auto* in_accum = context.Input<framework::Tensor>("InAccum");
    auto* in_state = context.Input<framework::Tensor>("InState");
257
    auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    T* cur_scale_data = static_cast<T*>(cur_scale->ptr());

    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);

    auto* out_state = context.Output<framework::Tensor>("OutState");
    auto* out_accum = context.Output<framework::Tensor>("OutAccum");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    out_state->mutable_data<T>(context.GetPlace());
    out_accum->mutable_data<T>(context.GetPlace());
    out_scale->mutable_data<T>(context.GetPlace());
    float moving_rate = context.Attr<float>("moving_rate");

    FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
        out_accum, out_scale);

275 276
    RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, out);
  }
277 278 279 280 281 282 283 284

  virtual ~FakeMovingAverageAbsMaxKernelBase() = default;

 protected:
  virtual void RunClipFunctor(const DeviceContext& dev_ctx,
                              const framework::Tensor& in,
                              const framework::Tensor& in_scale, int bin_cnt,
                              framework::Tensor* out) const = 0;
285 286 287 288 289
};

template <typename DeviceContext, typename T>
class FakeQuantizeMovingAverageAbsMaxKernel
    : public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
290
 protected:
291 292 293 294 295 296 297 298 299 300 301
  void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
                      const framework::Tensor& in_scale, int bin_cnt,
                      framework::Tensor* out) const override {
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale, bin_cnt,
                                                out);
  }
};

template <typename DeviceContext, typename T>
class FakeQuantizeDequantizeMovingAverageAbsMaxKernel
    : public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
302
 protected:
303 304 305 306 307
  void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
                      const framework::Tensor& in_scale, int bin_cnt,
                      framework::Tensor* out) const override {
    ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale,
                                                       bin_cnt, out);
308 309 310
  }
};

Z
Zhen Wang 已提交
311 312 313 314 315 316 317
template <typename DeviceContext, typename T>
class MovingAverageAbsMaxScaleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto& dev_ctx = context.template device_context<DeviceContext>();

318 319 320 321 322 323
    if (context.HasOutput("Out")) {
      auto* out = context.Output<framework::Tensor>("Out");
      out->mutable_data<T>(context.GetPlace());
      framework::TensorCopy(*in, context.GetPlace(), dev_ctx, out);
    }

Z
Zhen Wang 已提交
324 325 326 327 328 329 330 331 332
    bool is_test = context.Attr<bool>("is_test");
    // testing
    if (is_test) {
      return;
    }

    // training
    auto* in_accum = context.Input<framework::Tensor>("InAccum");
    auto* in_state = context.Input<framework::Tensor>("InState");
333
    auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
Z
Zhen Wang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    T* cur_scale_data = static_cast<T*>(cur_scale->ptr());

    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);

    auto* out_state = context.Output<framework::Tensor>("OutState");
    auto* out_accum = context.Output<framework::Tensor>("OutAccum");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    out_state->mutable_data<T>(context.GetPlace());
    out_accum->mutable_data<T>(context.GetPlace());
    out_scale->mutable_data<T>(context.GetPlace());
    float moving_rate = context.Attr<float>("moving_rate");

    FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
        out_accum, out_scale);
  }
};

353
template <typename DeviceContext, typename T>
354
class StrightThroughEstimatorGradKernel : public framework::OpKernel<T> {
355 356 357 358 359 360
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* d_out =
        context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto x_grad_name = framework::GradVarName("X");
    auto* d_x = context.Output<framework::LoDTensor>(x_grad_name);
361 362 363 364
    PADDLE_ENFORCE_NOT_NULL(d_x, platform::errors::PreconditionNotMet(
                                     "StrightThroughEstimatorGradKernel "
                                     "doesn't have the output named %s.",
                                     x_grad_name));
365 366 367 368 369 370 371

    // Initialize dx as same as d_out
    d_x->mutable_data<T>(context.GetPlace());
    framework::TensorCopy(*d_out, context.GetPlace(), d_x);
  }
};

视言's avatar
视言 已提交
372 373
}  // namespace operators
}  // namespace paddle