fake_quantize_op.h 11.1 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Z
Zhen Wang 已提交
20
#include "paddle/fluid/framework/tensor_util.h"
21
#include "paddle/fluid/memory/malloc.h"
视言's avatar
视言 已提交
22 23 24 25 26
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

27 28 29 30
template <typename DeviceContext, typename T>
struct FindAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const T* in, const int num, T* out);
};
视言's avatar
视言 已提交
31 32

template <typename DeviceContext, typename T>
33 34 35 36 37 38
struct ClipAndFakeQuantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  framework::Tensor* out);
};

39 40 41 42 43 44 45
template <typename DeviceContext, typename T>
struct ClipAndFakeQuantDequantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  framework::Tensor* out);
};

46 47 48 49 50 51 52 53
template <typename DeviceContext, typename T>
struct FindRangeAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale);
};

54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename DeviceContext, typename T>
struct FindChannelAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const T* in, const int num,
                  const int channel, T* out);
};

template <typename DeviceContext, typename T>
struct ChannelClipAndFakeQuantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  const int channel, framework::Tensor* out);
};

67 68 69 70 71 72 73 74 75
template <typename DeviceContext, typename T>
struct FindMovingAverageAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in_accum,
                  const framework::Tensor& in_state,
                  const framework::Tensor& cur_scale,
                  framework::Tensor* out_state, framework::Tensor* out_accum,
                  framework::Tensor* out_scale);
};

76 77
template <typename DeviceContext, typename T>
class FakeQuantizeAbsMaxKernel : public framework::OpKernel<T> {
视言's avatar
视言 已提交
78
 public:
79 80 81 82 83 84 85 86 87 88 89 90 91 92
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    T* out_s = out_scale->mutable_data<T>(context.GetPlace());

    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;

    auto& dev_ctx = context.template device_context<DeviceContext>();
    const T* in_data = in->data<T>();
    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in_data, in->numel(), out_s);
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
                                                bin_cnt, out);
视言's avatar
视言 已提交
93
  }
94
};
视言's avatar
视言 已提交
95

Z
Zhen Wang 已提交
96 97 98 99 100 101 102
template <typename DeviceContext, typename T>
class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");

    auto* out = context.Output<framework::Tensor>("Out");
103 104
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
Z
Zhen Wang 已提交
105 106 107 108 109 110
    out->mutable_data<T>(context.GetPlace());

    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;

    auto& dev_ctx = context.template device_context<DeviceContext>();
111 112 113 114
    FindChannelAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, in->data<T>(), in->numel(), in->dims()[0], out_scale_data);
    ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
        dev_ctx, *in, *out_scale, bin_cnt, in->dims()[0], out);
Z
Zhen Wang 已提交
115 116 117
  }
};

118 119 120 121
template <typename DeviceContext, typename T>
class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
视言's avatar
视言 已提交
122
    auto* in = context.Input<framework::Tensor>("X");
123
    auto* in_scale = context.Input<framework::Tensor>("InScale");
视言's avatar
视言 已提交
124

125 126 127 128
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    bool is_test = context.Attr<bool>("is_test");
视言's avatar
视言 已提交
129 130
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
131
    auto& dev_ctx = context.template device_context<DeviceContext>();
视言's avatar
视言 已提交
132

133 134 135 136 137
    // testing
    if (is_test) {
      ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
                                                  bin_cnt, out);
      return;
视言's avatar
视言 已提交
138 139
    }

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    // training
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    auto* out_scales = context.Output<framework::Tensor>("OutScales");
    auto* iter = context.Input<framework::Tensor>("Iter");

    int window_size = context.Attr<int>("window_size");
    out_scale->mutable_data<T>(context.GetPlace());

    framework::Tensor cur_scale;
    T* cur_scale_data = cur_scale.mutable_data<T>({1}, context.GetPlace());
    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);
    FindRangeAbsMaxFunctor<DeviceContext, T>()(dev_ctx, cur_scale, *in_scale,
                                               *iter, window_size, out_scales,
                                               out_scale);
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
                                                bin_cnt, out);
视言's avatar
视言 已提交
157 158 159
  }
};

160
template <typename DeviceContext, typename T>
161
class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
162
 public:
163 164 165 166 167
  ~FakeMovingAverageAbsMaxKernelBase() {}
  virtual void RunClipFunctor(const DeviceContext& dev_ctx,
                              const framework::Tensor& in,
                              const framework::Tensor& in_scale, int bin_cnt,
                              framework::Tensor* out) const = 0;
168 169 170 171 172 173 174 175 176 177 178 179 180
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* in_scale = context.Input<framework::Tensor>("InScale");
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    bool is_test = context.Attr<bool>("is_test");
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    // testing
    if (is_test) {
181
      RunClipFunctor(dev_ctx, *in, *in_scale, bin_cnt, out);
182 183 184 185 186 187
      return;
    }

    // training
    auto* in_accum = context.Input<framework::Tensor>("InAccum");
    auto* in_state = context.Input<framework::Tensor>("InState");
188
    auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    T* cur_scale_data = static_cast<T*>(cur_scale->ptr());

    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);

    auto* out_state = context.Output<framework::Tensor>("OutState");
    auto* out_accum = context.Output<framework::Tensor>("OutAccum");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    out_state->mutable_data<T>(context.GetPlace());
    out_accum->mutable_data<T>(context.GetPlace());
    out_scale->mutable_data<T>(context.GetPlace());
    float moving_rate = context.Attr<float>("moving_rate");

    FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
        out_accum, out_scale);

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, out);
  }
};

template <typename DeviceContext, typename T>
class FakeQuantizeMovingAverageAbsMaxKernel
    : public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
 public:
  void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
                      const framework::Tensor& in_scale, int bin_cnt,
                      framework::Tensor* out) const override {
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale, bin_cnt,
                                                out);
  }
};

template <typename DeviceContext, typename T>
class FakeQuantizeDequantizeMovingAverageAbsMaxKernel
    : public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
 public:
  void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
                      const framework::Tensor& in_scale, int bin_cnt,
                      framework::Tensor* out) const override {
    ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale,
                                                       bin_cnt, out);
231 232 233
  }
};

Z
Zhen Wang 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
template <typename DeviceContext, typename T>
class MovingAverageAbsMaxScaleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
    framework::TensorCopy(*in, context.GetPlace(), dev_ctx, out);

    bool is_test = context.Attr<bool>("is_test");
    // testing
    if (is_test) {
      return;
    }

    // training
    auto* in_accum = context.Input<framework::Tensor>("InAccum");
    auto* in_state = context.Input<framework::Tensor>("InState");
253
    auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
Z
Zhen Wang 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    T* cur_scale_data = static_cast<T*>(cur_scale->ptr());

    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);

    auto* out_state = context.Output<framework::Tensor>("OutState");
    auto* out_accum = context.Output<framework::Tensor>("OutAccum");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    out_state->mutable_data<T>(context.GetPlace());
    out_accum->mutable_data<T>(context.GetPlace());
    out_scale->mutable_data<T>(context.GetPlace());
    float moving_rate = context.Attr<float>("moving_rate");

    FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
        out_accum, out_scale);
  }
};

视言's avatar
视言 已提交
273 274
}  // namespace operators
}  // namespace paddle