pipeline_mnist.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main
import paddle.distributed.fleet as fleet

paddle.enable_static()

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.01)))
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.01)))

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    with fluid.device_guard("gpu:1"):
        predict = fluid.layers.fc(
            input=conv_pool_2,
            size=SIZE,
            act="softmax",
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01)))
        # To cover @RENAMED@GRADIENT
        predict2 = fluid.layers.fc(
            input=conv_pool_1,
            size=SIZE,
            act="softmax",
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01)))
        predict += predict2
84 85 86 87
    return predict


class TestDistMnist2x2(TestDistRunnerBase):
88

89 90 91
    def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
        # Input data
        with fluid.device_guard("gpu:0"):
92 93 94
            images = fluid.layers.data(name='pixel',
                                       shape=[1, 28, 28],
                                       dtype=DTYPE)
95 96 97 98 99 100 101 102 103 104 105 106
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')

            if dist_strategy:
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[images, label],
                    capacity=64,
                    use_double_buffer=False,
                    iterable=False)
            # Train program
            predict = cnn_model(images)
        with fluid.device_guard("gpu:1"):
            cost = fluid.layers.cross_entropy(input=predict, label=label)
107
            avg_cost = paddle.mean(x=cost)
108 109 110 111

        # Evaluator
        with fluid.device_guard("gpu:1"):
            batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
112 113 114
            batch_acc = fluid.layers.accuracy(input=predict,
                                              label=label,
                                              total=batch_size_tensor)
115 116 117 118 119 120 121

        inference_program = fluid.default_main_program().clone()
        base_lr = self.lr
        passes = [30, 60, 80, 90]
        steps_per_pass = 10
        bd = [steps_per_pass * p for p in passes]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
122 123 124
        lr_val = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)

        opt = paddle.optimizer.AdamW(
125 126
            learning_rate=lr_val,
            grad_clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))
127

128
        acc_steps = 2  # accumulated steps for pipeline
129
        if dist_strategy:
130
            # Reader
131 132 133 134
            train_reader = paddle.batch(paddle.dataset.mnist.test(),
                                        batch_size=batch_size)
            test_reader = paddle.batch(paddle.dataset.mnist.test(),
                                       batch_size=batch_size)
135 136 137
            fleet.init(is_collective=True)
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
138
            strategy.amp = True
139 140 141 142 143
            strategy.pipeline_configs = {
                'micro_batch_size': batch_size,
                'schedule_mode': '1F1B',
                'accumulate_steps': acc_steps
            }
144 145
            dist_opt = fleet.distributed_optimizer(optimizer=opt,
                                                   strategy=strategy)
146 147 148
            dist_opt.minimize(avg_cost)
        else:
            opt.minimize(avg_cost)
149
            # Reader
150 151 152 153
            train_reader = paddle.batch(paddle.dataset.mnist.test(),
                                        batch_size=batch_size * acc_steps)
            test_reader = paddle.batch(paddle.dataset.mnist.test(),
                                       batch_size=batch_size * acc_steps)
154 155 156 157 158 159 160 161 162

        if dist_strategy:
            return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader
        else:
            return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)