fusion_gru_op.cc 21.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
16

T
tensor-tang 已提交
17
#include <cstring>  // for memcpy
T
tensor-tang 已提交
18
#include <string>
H
huangxu96 已提交
19
#include <vector>
20

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/phi/kernels/funcs/blas/blas.h"
24
#include "paddle/phi/kernels/funcs/fc_functor.h"
F
Feiyu Chan 已提交
25
#include "paddle/phi/kernels/funcs/sequence2batch.h"
A
Adam 已提交
26 27 28
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
T
tensor-tang 已提交
29 30 31 32 33

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
34 35 36 37 38
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_gru");
T
tensor-tang 已提交
39
  auto x_dims = ctx->GetInputDim("X");
40
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1)
41
                        ? phi::flatten_to_2d(x_dims, 1)
42 43
                        : x_dims;
  PADDLE_ENFORCE_EQ(
44 45
      x_mat_dims.size(),
      2,
46 47 48 49
      platform::errors::InvalidArgument("The size of input X dims should be 2, "
                                        "or 3 with second dimension equal to "
                                        "1, but now Input X dim is:[%s] ",
                                        x_dims));
T
tensor-tang 已提交
50 51

  auto wx_dims = ctx->GetInputDim("WeightX");
52 53
  PADDLE_ENFORCE_EQ(wx_dims.size(),
                    2,
54 55 56
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX dim size is:%d, WeightX dim is:[%s] ",
57 58
                        wx_dims.size(),
                        wx_dims));
59
  PADDLE_ENFORCE_EQ(
60 61
      wx_dims[0],
      x_mat_dims[1],
62 63 64 65 66
      platform::errors::InvalidArgument(
          "The first dimension of flattened WeightX"
          "should equal to last dimension of flattened input X, but "
          "received fattened WeightX dimension is:%d, flattened X dimension "
          "is:%d",
67 68
          wx_dims[0],
          x_mat_dims[1]));
T
tensor-tang 已提交
69 70 71

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
72

73 74
  PADDLE_ENFORCE_EQ(wh_dims.size(),
                    2,
75 76 77
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH dim size is:%d, WeightH dim is:[%s]",
78 79 80 81
                        wh_dims.size(),
                        wh_dims));
  PADDLE_ENFORCE_EQ(wh_dims[0],
                    frame_size,
82 83 84 85 86
                    platform::errors::InvalidArgument(
                        "The first dimension of WeightH "
                        "should equal to frame_size, but received WeightH's "
                        "first dimension is: "
                        "%d, frame size is:%d",
87 88 89 90
                        wh_dims[0],
                        frame_size));
  PADDLE_ENFORCE_EQ(wh_dims[1],
                    3 * frame_size,
91 92 93 94
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 3 * frame_size, but received WeightH "
                        "is:%d, frame size is:%d",
95 96
                        wh_dims[1],
                        frame_size));
T
tensor-tang 已提交
97

98
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
99
    auto h0_dims = ctx->GetInputDim("H0");
100 101
    PADDLE_ENFORCE_EQ(h0_dims[1],
                      frame_size,
102 103 104
                      platform::errors::InvalidArgument(
                          "The width of H0 must be equal to frame_size, but "
                          "receiced the width of H0 is:%d, frame size is:%d",
105 106
                          h0_dims[1],
                          frame_size));
T
tensor-tang 已提交
107
  }
108
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
109
    auto b_dims = ctx->GetInputDim("Bias");
110 111
    PADDLE_ENFORCE_EQ(b_dims.size(),
                      2,
112 113 114
                      platform::errors::InvalidArgument(
                          "The rank of Input(Bias) should be 2, but received "
                          "Bias rank is:%d, Bias dim is:[%s]",
115 116 117 118
                          b_dims.size(),
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[0],
                      1,
119 120 121
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(Bias) should be 1, but "
                          "received Bias first dim is:%d, Bias dim is:[%s]",
122 123 124 125
                          b_dims[0],
                          b_dims));
    PADDLE_ENFORCE_EQ(b_dims[1],
                      frame_size * 3,
126 127 128
                      platform::errors::InvalidArgument(
                          "The shape of Bias must be [1, frame_size * 3], but "
                          "received bias dim is:[%s], frame size is:%d",
129 130
                          b_dims,
                          frame_size));
T
tensor-tang 已提交
131
  }
132
  framework::DDim out_dims({x_mat_dims[0], frame_size});
T
tensor-tang 已提交
133 134
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
135
  int xx_width;
T
tensor-tang 已提交
136
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
137 138
    xx_width = wx_dims[1];
  } else {
139
    xx_width = x_mat_dims[1] > wx_dims[1] ? wx_dims[1] : x_mat_dims[1];
140 141 142 143 144 145
    OP_INOUT_CHECK(
        ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedInput"), "Output", "BatchedInput", "fusion_gru");
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedOut"), "Output", "BatchedOut", "fusion_gru");
146
    ctx->SetOutputDim("BatchedInput", {x_mat_dims[0], wx_dims[1]});
T
tensor-tang 已提交
147
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
148
  }
149
  ctx->SetOutputDim("XX", {x_mat_dims[0], xx_width});
T
tensor-tang 已提交
150
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
151 152 153 154
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
155
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
156
#ifdef PADDLE_WITH_MKLDNN
157
  if (this->CanMKLDNNBeUsed(ctx, data_type)) {
J
jiahongyu 已提交
158 159 160 161
    return framework::OpKernelType(data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kMKLDNN,
                                   framework::LibraryType::kMKLDNN);
A
Adam 已提交
162 163
  }
#endif
J
jiahongyu 已提交
164
  return framework::OpKernelType(data_type, ctx.GetPlace());
T
tensor-tang 已提交
165 166 167
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
168 169
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
170
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
171 172
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
173 174 175 176 177
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
178 179 180 181
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
182 183 184 185 186
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
187
  AddInput("Bias",
T
tensor-tang 已提交
188 189 190
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
191
      .AsDispensable();
T
tensor-tang 已提交
192 193
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
194
  AddOutput("XX",
T
tensor-tang 已提交
195
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
196 197 198
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
199
      .AsIntermediate();
T
tensor-tang 已提交
200 201 202 203
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
204
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
205
      .AsIntermediate();
T
tensor-tang 已提交
206
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
207 208 209 210 211 212 213 214 215 216
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
217
                "(bool, default: False) "
T
tensor-tang 已提交
218 219
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
220
  AddAttr<bool>("use_seq",
翟飞跃 已提交
221
                "(bool, default: True) "
T
tensor-tang 已提交
222 223
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
A
Adam 已提交
224 225 226 227
  AddAttr<bool>("origin_mode",
                "bool"
                "use origin mode in article https://arxiv.org/abs/1412.3555")
      .SetDefault(false);
A
Adam 已提交
228 229 230
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
A
Adam 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
  AddAttr<float>("Scale_data",
                 "Scale to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Shift_data",
                 "Shift to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(0.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
T
tensor-tang 已提交
252 253
  AddComment(R"DOC(
The Fusion complete GRU Operator.
254
This operator fuse the fully-connected operator into GRU,
T
tensor-tang 已提交
255 256 257 258
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
259
template <typename T>
T
tensor-tang 已提交
260 261
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
262
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
263
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
264 265 266 267 268 269
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

270 271 272 273 274 275 276
#define INIT_BASE_DEFINES                                  \
  auto* x = ctx.Input<LoDTensor>("X");                     \
  auto* wh = ctx.Input<Tensor>("WeightH");                 \
  auto* xx = ctx.Output<LoDTensor>("XX");                  \
  auto x_lod = x->lod();                                   \
  auto x_dims = x->dims(); /* T x M*/                      \
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1) \
277
                        ? phi::flatten_to_2d(x_dims, 1)    \
278 279 280
                        : x_dims;                          \
  auto wh_dims = wh->dims(); /* D x 3D*/                   \
  const int total_T = x_mat_dims[0];                       \
T
tensor-tang 已提交
281 282
  const int D3 = wh_dims[1]

283 284 285 286 287 288
#define INIT_OTHER_DEFINES                                                   \
  auto* h0 = ctx.Input<Tensor>("H0");                                        \
  auto* wx = ctx.Input<Tensor>("WeightX");                                   \
  auto* bias = ctx.Input<Tensor>("Bias");                                    \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");                        \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                            \
289
  const int M = x_mat_dims[1];                                               \
290 291 292
  const int D = wh_dims[0];                                                  \
  const int D2 = D * 2;                                                      \
  const jit::gru_attr_t attr(                                                \
293 294
      D,                                                                     \
      jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),          \
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
      jit::to_kerneltype(ctx.Attr<std::string>("activation")));              \
  jit::gru_t one_step;                                                       \
  auto ComputeH1 =                                                           \
      jit::KernelFuncs<jit::GRUH1Tuple<T>, platform::CPUPlace>::Cache().At(  \
          attr);                                                             \
  auto ComputeHtPart1 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart1Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  auto ComputeHtPart2 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart2Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  const T* x_data = x->data<T>();                                            \
  const T* wx_data = wx->data<T>();                                          \
  const T* wh_data = wh->data<T>();                                          \
  auto place = ctx.GetPlace();                                               \
T
tensor-tang 已提交
310
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
311

T
tensor-tang 已提交
312
  void SeqCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
313
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
314 315
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
316
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
317
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
318
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
319
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
320
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
321 322

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
323
    phi::funcs::FCFunctor<DeviceContext, T> fc;
324 325 326 327 328 329 330
    fc(dev_ctx,
       total_T,
       D3,
       M,
       x_data,
       wx_data,
       xx_data,
331
       bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
349
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
350 351 352 353
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
354 355
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
356
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
357 358 359 360 361 362
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
363 364 365 366 367 368 369 370 371 372 373 374
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D2,
                  D,
                  static_cast<T>(1),
                  prev_hidden_data,
                  D,
                  wh_data,
                  D2,
                  static_cast<T>(1),
                  xx_data,
T
tensor-tang 已提交
375
                  D3);
376 377 378
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
379
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
380
        // gemm rt * Ws
381 382 383 384 385 386 387 388 389 390 391 392 393
        blas.GEMM(CblasNoTrans,
                  CblasNoTrans,
                  1,
                  D,
                  D,
                  static_cast<T>(1),
                  hidden_out_data,
                  D,
                  wh_state_data,
                  D,
                  static_cast<T>(1),
                  xx_data + D2,
                  D3);
394
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
395 396 397 398 399 400 401 402
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
L
Leo Chen 已提交
403
    using DeviceContext = phi::CPUContext;
T
tensor-tang 已提交
404 405
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
406
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
407 408 409
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
410
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
411 412 413
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
414 415 416
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
417
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
418
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
F
Feiyu Chan 已提交
419
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
420

421
    phi::funcs::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
422
    if (M > D3) {
423 424 425 426 427 428 429
      fc(dev_ctx,
         total_T,
         D3,
         M,
         x_data,
         wx_data,
         xx_data,
430
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
431
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
432 433
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
434
      batched_input->set_lod(xx->lod());
435 436 437 438 439 440 441
      fc(dev_ctx,
         total_T,
         D3,
         M,
         xx_data,
         wx_data,
         batched_input_data,
442
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
443 444
    }

T
tensor-tang 已提交
445 446 447 448
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
449

T
tensor-tang 已提交
450
    int tstart = 0;
T
tensor-tang 已提交
451
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
452
    if (h0) {
T
tensor-tang 已提交
453
      // reorder h0
T
tensor-tang 已提交
454
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
455 456 457 458 459 460 461
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
462
    } else {
T
tensor-tang 已提交
463 464 465 466 467
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
468 469
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
470
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
471 472 473 474 475 476
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
477
    }
T
tensor-tang 已提交
478 479 480 481 482 483 484 485 486
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
487 488 489 490 491 492 493 494 495 496 497 498 499
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D2,
                D,
                static_cast<T>(1),
                prev_hidden_data,
                D,
                wh_data,
                D2,
                static_cast<T>(1),
                batched_input_data,
                D3);
T
tensor-tang 已提交
500 501

      T* cur_batched_data = batched_input_data;
502
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
503 504
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
505 506 507
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
508
        ComputeHtPart1(&one_step, &attr);
509

T
tensor-tang 已提交
510 511
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
512
        cur_out_data += D;
T
tensor-tang 已提交
513 514
      }

T
tensor-tang 已提交
515
      cur_batched_data = batched_input_data;
516
      cur_out_data = batched_out_data;
517 518 519 520 521 522 523 524 525 526 527 528 529
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                cur_bs,
                D,
                D,
                static_cast<T>(1),
                cur_out_data,
                D,
                wh_state_data,
                D,
                static_cast<T>(1),
                cur_batched_data + D2,
                D3);
T
tensor-tang 已提交
530 531 532

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
533 534 535
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
536
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
537 538 539
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
540
      }
T
tensor-tang 已提交
541 542 543
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
544
    }
T
tensor-tang 已提交
545

F
Feiyu Chan 已提交
546
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
547 548
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
549
  }
T
tensor-tang 已提交
550 551
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
552 553 554 555 556 557
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
558 559
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker);

560 561
REGISTER_OP_CPU_KERNEL(fusion_gru,
                       ops::FusionGRUKernel<float>,
T
tensor-tang 已提交
562
                       ops::FusionGRUKernel<double>);
563 564 565 566 567 568 569 570 571

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(fusion_gru)
    .AddCheckpoint(
        R"ROC(Upgrade fusion_gru add a new attribute [Scale_weights])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_weights",
            "The added attribute 'Scale_weights' is not yet "
            "registered.",
572
            std::vector<float>{1.0f}));