fusion_gru_op.cc 20.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
16

T
tensor-tang 已提交
17
#include <cstring>  // for memcpy
T
tensor-tang 已提交
18
#include <string>
H
huangxu96 已提交
19
#include <vector>
20

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/phi/kernels/funcs/blas/blas.h"
24
#include "paddle/phi/kernels/funcs/fc_functor.h"
F
Feiyu Chan 已提交
25
#include "paddle/phi/kernels/funcs/sequence2batch.h"
A
Adam 已提交
26 27 28
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
T
tensor-tang 已提交
29 30 31 32 33

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
34 35 36 37 38
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_gru");
T
tensor-tang 已提交
39
  auto x_dims = ctx->GetInputDim("X");
40
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1)
41
                        ? phi::flatten_to_2d(x_dims, 1)
42 43 44 45 46 47 48
                        : x_dims;
  PADDLE_ENFORCE_EQ(
      x_mat_dims.size(), 2,
      platform::errors::InvalidArgument("The size of input X dims should be 2, "
                                        "or 3 with second dimension equal to "
                                        "1, but now Input X dim is:[%s] ",
                                        x_dims));
T
tensor-tang 已提交
49 50 51

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
52 53 54 55
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX dim size is:%d, WeightX dim is:[%s] ",
                        wx_dims.size(), wx_dims));
56 57 58 59 60 61 62 63
  PADDLE_ENFORCE_EQ(
      wx_dims[0], x_mat_dims[1],
      platform::errors::InvalidArgument(
          "The first dimension of flattened WeightX"
          "should equal to last dimension of flattened input X, but "
          "received fattened WeightX dimension is:%d, flattened X dimension "
          "is:%d",
          wx_dims[0], x_mat_dims[1]));
T
tensor-tang 已提交
64 65 66

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
67

T
tensor-tang 已提交
68
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
69 70 71 72
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH dim size is:%d, WeightH dim is:[%s]",
                        wh_dims.size(), wh_dims));
T
tensor-tang 已提交
73
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
74 75 76 77 78 79
                    platform::errors::InvalidArgument(
                        "The first dimension of WeightH "
                        "should equal to frame_size, but received WeightH's "
                        "first dimension is: "
                        "%d, frame size is:%d",
                        wh_dims[0], frame_size));
T
tensor-tang 已提交
80
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
81 82 83 84 85
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 3 * frame_size, but received WeightH "
                        "is:%d, frame size is:%d",
                        wh_dims[1], frame_size));
T
tensor-tang 已提交
86

87
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
88 89
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
90 91 92 93
                      platform::errors::InvalidArgument(
                          "The width of H0 must be equal to frame_size, but "
                          "receiced the width of H0 is:%d, frame size is:%d",
                          h0_dims[1], frame_size));
T
tensor-tang 已提交
94
  }
95
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
96
    auto b_dims = ctx->GetInputDim("Bias");
97 98 99 100 101
    PADDLE_ENFORCE_EQ(b_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(Bias) should be 2, but received "
                          "Bias rank is:%d, Bias dim is:[%s]",
                          b_dims.size(), b_dims));
T
tensor-tang 已提交
102
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
103 104 105 106
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(Bias) should be 1, but "
                          "received Bias first dim is:%d, Bias dim is:[%s]",
                          b_dims[0], b_dims));
T
tensor-tang 已提交
107
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
108 109 110 111
                      platform::errors::InvalidArgument(
                          "The shape of Bias must be [1, frame_size * 3], but "
                          "received bias dim is:[%s], frame size is:%d",
                          b_dims, frame_size));
T
tensor-tang 已提交
112
  }
113
  framework::DDim out_dims({x_mat_dims[0], frame_size});
T
tensor-tang 已提交
114 115
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
116
  int xx_width;
T
tensor-tang 已提交
117
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
118 119
    xx_width = wx_dims[1];
  } else {
120
    xx_width = x_mat_dims[1] > wx_dims[1] ? wx_dims[1] : x_mat_dims[1];
121 122 123 124 125 126
    OP_INOUT_CHECK(ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0",
                   "fusion_gru");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedInput"), "Output", "BatchedInput",
                   "fusion_gru");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedOut"), "Output", "BatchedOut",
                   "fusion_gru");
127
    ctx->SetOutputDim("BatchedInput", {x_mat_dims[0], wx_dims[1]});
T
tensor-tang 已提交
128
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
129
  }
130
  ctx->SetOutputDim("XX", {x_mat_dims[0], xx_width});
T
tensor-tang 已提交
131
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
132 133 134 135
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
A
Adam 已提交
136 137
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
138
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
139
#ifdef PADDLE_WITH_MKLDNN
140
  if (this->CanMKLDNNBeUsed(ctx, data_type)) {
A
Adam 已提交
141 142 143 144
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
#endif
145
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
T
tensor-tang 已提交
146 147 148
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
149 150
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
151
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
152 153
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
154 155 156 157 158
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
159 160 161 162
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
163 164 165 166 167
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
168
  AddInput("Bias",
T
tensor-tang 已提交
169 170 171
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
172
      .AsDispensable();
T
tensor-tang 已提交
173 174
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
175
  AddOutput("XX",
T
tensor-tang 已提交
176
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
177 178 179
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
180
      .AsIntermediate();
T
tensor-tang 已提交
181 182 183 184
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
185
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
186
      .AsIntermediate();
T
tensor-tang 已提交
187
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
188 189 190 191 192 193 194 195 196 197
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
198
                "(bool, default: False) "
T
tensor-tang 已提交
199 200
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
201
  AddAttr<bool>("use_seq",
翟飞跃 已提交
202
                "(bool, default: True) "
T
tensor-tang 已提交
203 204
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
A
Adam 已提交
205 206 207 208
  AddAttr<bool>("origin_mode",
                "bool"
                "use origin mode in article https://arxiv.org/abs/1412.3555")
      .SetDefault(false);
A
Adam 已提交
209 210 211
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
A
Adam 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
  AddAttr<float>("Scale_data",
                 "Scale to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Shift_data",
                 "Shift to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(0.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
T
tensor-tang 已提交
233 234 235 236 237 238 239
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
240
template <typename T>
T
tensor-tang 已提交
241 242
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
243
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
244
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
245 246 247 248 249 250
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

251 252 253 254 255 256 257
#define INIT_BASE_DEFINES                                  \
  auto* x = ctx.Input<LoDTensor>("X");                     \
  auto* wh = ctx.Input<Tensor>("WeightH");                 \
  auto* xx = ctx.Output<LoDTensor>("XX");                  \
  auto x_lod = x->lod();                                   \
  auto x_dims = x->dims(); /* T x M*/                      \
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1) \
258
                        ? phi::flatten_to_2d(x_dims, 1)    \
259 260 261
                        : x_dims;                          \
  auto wh_dims = wh->dims(); /* D x 3D*/                   \
  const int total_T = x_mat_dims[0];                       \
T
tensor-tang 已提交
262 263
  const int D3 = wh_dims[1]

264 265 266 267 268 269
#define INIT_OTHER_DEFINES                                                   \
  auto* h0 = ctx.Input<Tensor>("H0");                                        \
  auto* wx = ctx.Input<Tensor>("WeightX");                                   \
  auto* bias = ctx.Input<Tensor>("Bias");                                    \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");                        \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                            \
270
  const int M = x_mat_dims[1];                                               \
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  const int D = wh_dims[0];                                                  \
  const int D2 = D * 2;                                                      \
  const jit::gru_attr_t attr(                                                \
      D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),       \
      jit::to_kerneltype(ctx.Attr<std::string>("activation")));              \
  jit::gru_t one_step;                                                       \
  auto ComputeH1 =                                                           \
      jit::KernelFuncs<jit::GRUH1Tuple<T>, platform::CPUPlace>::Cache().At(  \
          attr);                                                             \
  auto ComputeHtPart1 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart1Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  auto ComputeHtPart2 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart2Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  const T* x_data = x->data<T>();                                            \
  const T* wx_data = wx->data<T>();                                          \
  const T* wh_data = wh->data<T>();                                          \
  auto place = ctx.GetPlace();                                               \
T
tensor-tang 已提交
290
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
291

T
tensor-tang 已提交
292 293
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
294 295
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
296
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
297
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
298
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
299
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
300
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
301 302

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
303
    phi::funcs::FCFunctor<DeviceContext, T> fc;
304 305
    fc(dev_ctx, total_T, D3, M, x_data, wx_data, xx_data,
       bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
323
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
324 325 326 327
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
328 329
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
330
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
331 332 333 334 335 336 337 338 339
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
340 341 342
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
343
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
344 345 346 347
        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
348
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
349 350 351 352 353 354 355 356
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
357
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
358 359
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
360
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
361 362 363
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
364
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
365 366 367
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
368 369 370
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
371
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
372
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
F
Feiyu Chan 已提交
373
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
374

375
    phi::funcs::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
376
    if (M > D3) {
377 378
      fc(dev_ctx, total_T, D3, M, x_data, wx_data, xx_data,
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
379
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
380 381
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
382
      batched_input->set_lod(xx->lod());
383 384
      fc(dev_ctx, total_T, D3, M, xx_data, wx_data, batched_input_data,
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
385 386
    }

T
tensor-tang 已提交
387 388 389 390
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
391

T
tensor-tang 已提交
392
    int tstart = 0;
T
tensor-tang 已提交
393
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
394
    if (h0) {
T
tensor-tang 已提交
395
      // reorder h0
T
tensor-tang 已提交
396
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
397 398 399 400 401 402 403
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
404
    } else {
T
tensor-tang 已提交
405 406 407 408 409
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
410 411
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
412
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
413 414 415 416 417 418
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
419
    }
T
tensor-tang 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
434
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
435 436
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
437 438 439
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
440
        ComputeHtPart1(&one_step, &attr);
441

T
tensor-tang 已提交
442 443
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
444
        cur_out_data += D;
T
tensor-tang 已提交
445 446
      }

T
tensor-tang 已提交
447
      cur_batched_data = batched_input_data;
448
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
449
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
450
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
451 452 453 454
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
455 456 457
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
458
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
459 460 461
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
462
      }
T
tensor-tang 已提交
463 464 465
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
466
    }
T
tensor-tang 已提交
467

F
Feiyu Chan 已提交
468
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
469 470
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
471
  }
T
tensor-tang 已提交
472 473
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
474 475 476 477 478 479
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
480 481
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker);

T
tensor-tang 已提交
482 483
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);
484 485 486 487 488 489 490 491 492

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(fusion_gru)
    .AddCheckpoint(
        R"ROC(Upgrade fusion_gru add a new attribute [Scale_weights])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_weights",
            "The added attribute 'Scale_weights' is not yet "
            "registered.",
493
            std::vector<float>{1.0f}));