operator.cc 45.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/executor.h"
26
#include "paddle/fluid/framework/lod_tensor.h"
27
#include "paddle/fluid/framework/op_call_stack.h"
28
#include "paddle/fluid/framework/op_proto_maker.h"
29
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/shape_inference.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
32
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/var_type.h"
34
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
35

36 37 38 39
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
40
DECLARE_bool(benchmark);
41
DECLARE_bool(check_nan_inf);
42
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
43
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
44 45 46
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
47

Q
Qiao Longfei 已提交
48 49 50
namespace paddle {
namespace framework {

51 52 53 54 55 56
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
57

58 59
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
60
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
61 62
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
63 64
  }

M
minqiyang 已提交
65 66 67 68 69 70 71 72 73
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
74 75 76 77 78
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
79 80 81 82 83 84
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
85 86 87 88 89
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
90

M
minqiyang 已提交
91 92 93
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
94 95
      return "";
    }
Y
Yu Yang 已提交
96
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
97
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
98 99 100 101
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
102
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
103
    }
D
dzhwinter 已提交
104 105 106 107 108
  } else {
    return "";
  }
}

109 110 111 112 113 114
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
115 116
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
117 118 119 120 121
  }

  return -1;
}

122
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
123 124 125 126 127 128 129
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
130 131 132
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
133 134 135 136 137
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
138 139 140 141 142
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
143
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
144 145 146 147 148 149
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
150
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
151 152 153 154 155 156
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

157
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
158 159 160
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
161
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
162
      PADDLE_THROW("Cannot run operator on place %s", place);
163
#else
P
peizhilin 已提交
164 165
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
166
#endif
P
peizhilin 已提交
167
    }
P
peizhilin 已提交
168

P
peizhilin 已提交
169 170 171 172 173
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
174
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
175 176 177 178 179
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
180
  } catch (platform::EnforceNotMet& exception) {
181
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
182
    throw std::move(exception);
183 184 185 186 187 188
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
189
  } catch (...) {
190
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
191
    std::rethrow_exception(std::current_exception());
192
  }
193 194
}

195
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
196
  return inputs_.find(name) != inputs_.end();
197 198
}

199
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
200
  auto& ins = Inputs(name);
201 202 203 204 205
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
206
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
207 208
}

Y
Yu Yang 已提交
209 210
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
211
  auto it = inputs_.find(name);
212 213
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
214
  return it->second;
Y
Yan Chunwei 已提交
215 216
}

217
bool OperatorBase::HasOutputs(const std::string& name) const {
218
  if (outputs_.find(name) != outputs_.end()) {
219 220 221 222 223 224
    return true;
  } else {
    return false;
  }
}

225
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
226
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
227
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
228 229
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
230
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
231 232
}

Y
Yu Yang 已提交
233 234
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
235
  auto it = outputs_.find(name);
236 237
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
238
  return it->second;
Y
Yan Chunwei 已提交
239 240
}

241
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
242
  std::stringstream ss;
Y
Yu Yang 已提交
243
  ss << "Op(" << type_ << "), inputs:{";
244

245
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
246 247
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
248 249
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
250 251
  }

Y
Yu Yang 已提交
252 253
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
254 255
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
256 257
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
258 259
      auto var_name = input.second[i];
      ss << var_name;
260
      if (scope) {
Q
Qiao Longfei 已提交
261 262 263 264 265 266 267
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
268 269 270
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
271
          ss << ":" << dtype;
272 273
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
274
        }
275
      }
Y
Yu Yang 已提交
276 277 278
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
279
    }
Y
Yu Yang 已提交
280
    ss << "]";
Y
Yu Yang 已提交
281 282
    ++it;
    if (it != inputs_.end()) {
283 284
      ss << ", ";
    }
Q
Qiao Longfei 已提交
285
  }
Y
Yu Yang 已提交
286
  ss << "}, outputs:{";
Y
Yu Yang 已提交
287 288
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
289 290
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
291 292
      auto var_name = output.second[i];
      ss << var_name;
293
      if (scope) {
Q
Qiao Longfei 已提交
294 295 296 297 298 299 300
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
301 302
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
303 304
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
305
        }
306
      }
Y
Yu Yang 已提交
307 308 309
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
310
    }
Y
Yu Yang 已提交
311
    ss << "]";
Y
Yu Yang 已提交
312 313
    ++it;
    if (it != outputs_.end()) {
314 315
      ss << ", ";
    }
Q
Qiao Longfei 已提交
316
  }
Y
Yu Yang 已提交
317
  ss << "}.";
Q
Qiao Longfei 已提交
318 319 320
  return ss.str();
}

Y
Yu Yang 已提交
321
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
322 323
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
324
                           const AttributeMap& attrs)
S
sneaxiy 已提交
325 326 327 328 329 330
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
331 332 333 334 335 336 337 338
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
339
}
340

Q
qijun 已提交
341 342
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
343
  for (auto& o : inputs_) {
Q
qijun 已提交
344 345 346 347 348 349
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
350 351 352 353 354 355 356 357 358 359
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
360
  auto& info = Info();
Y
Yu Yang 已提交
361 362

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
363
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
373 374
}

375
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
376
  if (info_ == nullptr || info_->proto_ == nullptr) return;
377

S
sneaxiy 已提交
378
  for (auto& in : info_->Proto().inputs()) {
379 380 381 382
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
383 384
  }

S
sneaxiy 已提交
385
  for (auto& out : info_->Proto().outputs()) {
386 387 388 389 390
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
407
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
408
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
409 410
}

C
chengduo 已提交
411
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
412 413 414 415
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
416
  } else {
Y
Yang Yang 已提交
417
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
418
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
419 420 421
  }
}

C
chengduo 已提交
422
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
423
  if (var->IsType<LoDTensor>()) {
424
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
425
  } else if (var->IsType<SelectedRows>()) {
426
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
427
  } else {
Y
Yang Yang 已提交
428
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
429
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
430 431 432
  }
}

433
bool ExecutionContext::HasInput(const std::string& name) const {
434
  auto* var = InputVar(name);
435 436 437 438
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
439
  auto* var = OutputVar(name);
440 441 442
  return var != nullptr;
}

X
Xin Pan 已提交
443
const Variable* ExecutionContext::InputVar(const std::string& name) const {
444 445
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
446 447 448
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

449 450 451 452 453
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
454 455 456
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
457
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
458 459 460 461 462 463 464 465 466
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

467
template <>
468
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
469
  return Input<LoDTensor>(name);
470 471 472
}

template <>
473
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
474
    const std::string& name) const {
475 476
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
477 478
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
479 480 481 482 483
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
484
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
485 486 487 488
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
489
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
490 491 492 493 494
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

495
template <>
496
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
497
  return Output<LoDTensor>(name);
498 499 500
}

template <>
501
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
502
    const std::string& name) const {
H
hong 已提交
503 504 505
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
506 507
    return {};
  }
508
  std::vector<Tensor*> res;
509 510 511 512 513
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
514
                 });
515 516 517
  return res;
}

Y
Yu Yang 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

533 534
class RuntimeInferShapeContext : public InferShapeContext {
 public:
535
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
536
      : op_(op), ctx_(ctx) {}
537 538

  bool HasInput(const std::string& name) const override {
539
    // has only one input
X
Xin Pan 已提交
540
    const auto& ins = ctx_.inputs;
541 542
    auto it = ins.find(name);
    if (it == ins.end()) {
543 544
      return false;
    }
545
    const auto& in = it->second;
X
Xin Pan 已提交
546
    if (in.size() == 0) return false;
T
tensor-tang 已提交
547
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
548
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
549
    return in[0] != nullptr;
550 551 552
  }

  bool HasOutput(const std::string& name) const override {
553
    // has only one output
X
Xin Pan 已提交
554
    const auto& outs = ctx_.outputs;
555 556
    auto it = outs.find(name);
    if (it == outs.end()) {
557 558
      return false;
    }
559
    const auto& out = it->second;
X
Xin Pan 已提交
560
    if (out.size() == 0) {
561 562
      return false;
    }
T
tensor-tang 已提交
563 564
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
565
    return out[0] != nullptr;
566 567 568
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
569 570
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
571
    if (it == ins.end() || it->second.empty()) {
572 573
      return false;
    }
X
Xin Pan 已提交
574 575
    for (auto& input : it->second) {
      if (input == nullptr) {
576 577 578 579 580 581 582
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
583 584
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
585
    if (it == outs.end() || it->second.empty()) {
586 587
      return false;
    }
X
Xin Pan 已提交
588 589
    for (auto& output : it->second) {
      if (output == nullptr) {
590 591 592 593 594 595 596 597
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
598
  std::vector<std::string> Inputs(const std::string& name) const override {
599 600 601
    return op_.Inputs(name);
  }

H
hong 已提交
602
  std::vector<std::string> Outputs(const std::string& name) const override {
603 604 605
    return op_.Outputs(name);
  }

606 607
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
608 609 610 611 612 613 614 615 616
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
617 618

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
619
                   "The type of %s and %s is not the same.", in, out);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

H
hong 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
            "Op [%s]: Input var size should be equal with ouput var size",
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
683 684
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
685 686 687 688 689 690 691 692
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
693
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
694
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
695 696
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
697
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
698 699
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
700

M
mozga-intel 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
720 721
  }

722
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
723
    PADDLE_THROW(
724
        "GetLoDLevel is only used in compile time. The calculation of "
725 726 727 728
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
  }

729 730
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
731
    PADDLE_THROW(
732
        "SetLoDLevel is only used in compile time. The calculation of "
733 734
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
C
chengduo 已提交
735 736
  }

737 738
  bool IsRuntime() const override { return true; }

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
771 772 773 774 775 776 777 778 779 780
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

795
 protected:
X
Xin Pan 已提交
796
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
797
    PADDLE_ENFORCE_NOT_NULL(var);
798 799 800 801 802
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
803
      PADDLE_THROW(
X
Xin Pan 已提交
804
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
805
          "type_id is %s.",
S
sneaxiy 已提交
806
          ToTypeName(var->Type()));
F
fengjiayi 已提交
807 808 809
    }
  }

X
Xin Pan 已提交
810 811 812 813 814 815 816 817
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
818
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
819
    PADDLE_THROW("Only compile time support this method");
820 821
  }

X
Xin Pan 已提交
822
  void SetDim(Variable* var, const DDim& dim) {
823 824 825 826 827
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
828
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
829
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
830 831 832 833 834 835 836 837 838 839 840 841
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
842 843 844
    }
  }

F
fengjiayi 已提交
845 846
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
847
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
848 849
  }

X
Xin Pan 已提交
850 851 852 853 854 855 856 857 858 859 860
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
861 862 863
    return ToVarType(var->Type());
  }

864 865 866 867 868 869 870 871 872 873 874 875 876 877
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
878 879
  }

880
  const OperatorBase& op_;
X
Xin Pan 已提交
881
  const RuntimeContext& ctx_;
882 883
};

884 885
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
886 887 888 889
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
890 891
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
892 893 894
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
895
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
896
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
897
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
898 899
}

B
baojun-nervana 已提交
900
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
901 902
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
903
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
904 905 906
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
907 908 909 910 911 912 913 914 915 916
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
917 918
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
919 920
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
921 922 923
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
924
      HasAttr(kAllKernelsMustComputeRuntimeShape))
925 926
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
927 928 929 930
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
931 932 933 934 935 936
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
937 938 939 940 941 942 943 944
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
945
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
946
  auto* dev_ctx = pool.Get(place);
947

948
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
949
    ChooseKernel(*runtime_ctx, scope, place);
950 951
  }

L
Liu Yiqun 已提交
952
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
953

Y
yuyang18 已提交
954 955
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
956
  auto* transfer_scope =
957
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
958

Y
yuyang18 已提交
959 960 961 962
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

963 964
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
965
  }
Q
QI JUN 已提交
966

967
  if (!all_kernels_must_compute_runtime_shape_) {
968
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
969 970
    this->InferShape(&infer_shape_ctx);
  }
971 972 973 974 975

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
976 977
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
978 979
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
980

Y
yuyang18 已提交
981 982 983
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
984
  }
985 986 987 988 989 990 991 992
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
993

D
dzhwinter 已提交
994
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
995
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
996
    dev_ctx->Wait();
D
dzhwinter 已提交
997
  }
C
chengduoZH 已提交
998

P
pkpk 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1018
  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1019
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1020
  }
1021 1022 1023 1024 1025 1026 1027

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1028
}
X
Xin Pan 已提交
1029

L
Liu Yiqun 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1066 1067 1068 1069 1070
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1071 1072
}

Y
yuyang18 已提交
1073 1074 1075 1076
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1077
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1078 1079 1080
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1081
    auto* original_tensor =
C
chengduo 已提交
1082
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1083
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1084 1085
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1086
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1087 1088 1089 1090
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1091
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1092
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1093 1094
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1095
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1096

1097
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1098 1099 1100 1101
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1102 1103
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1104 1105 1106
    }
  }

Y
yuyang18 已提交
1107
  for (auto& var_name_item : Inputs()) {
1108 1109
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1110

X
Xin Pan 已提交
1111 1112 1113 1114
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1115
      auto* var = input_vars[i];
X
Xin Pan 已提交
1116

Y
yuyang18 已提交
1117
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1118
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1119 1120 1121
        continue;
      }

C
chengduo 已提交
1122
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
            (paddle::platform::get_cur_paddle_data_layout() ==
             DataLayout::kNHWC)) {
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1178 1179
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1180

1181 1182 1183
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1184
      // We use a thread_local cache to fix that issue, the key in the cache is
1185 1186 1187 1188 1189
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1190 1191
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1192
      // variables, that behavior a lot different.
1193 1194 1195 1196 1197 1198 1199 1200 1201
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1202 1203
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1204
        enable_cache_transfer_scope_ = true;
1205
      }
1206
      if (!new_scope) {
Y
yuyang18 已提交
1207 1208
        new_scope = &scope.NewScope();
      }
1209 1210 1211 1212
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1213
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1214 1215
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1216
      if (enable_cache_runtime_context_) {
1217 1218
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1219
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1220
      input_vars[i] = trans_var;
Y
yuyang18 已提交
1221
      Tensor out;
Y
yuyang18 已提交
1222
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1223 1224 1225 1226 1227 1228
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1229

1230 1231 1232 1233 1234
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1235
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
      }
      if (t != nullptr) {
1248 1249 1250 1251 1252
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1253
                Type(), name, ctx.InputNames(name).at(i)));
1254
        proto::VarType::Type tmp = t->type();
1255 1256 1257 1258 1259 1260 1261 1262
        PADDLE_ENFORCE(
            tmp == *data_type || *data_type == dafault_data_type,
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1263 1264 1265 1266 1267 1268
        *data_type = tmp;
      }
    }
  }
}

1269
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1270
    const ExecutionContext& ctx) const {
1271 1272 1273
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1274 1275
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1276
  }
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1293
  return data_type;
Y
Yu Yang 已提交
1294
}
1295

1296 1297 1298 1299 1300 1301 1302 1303
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1304 1305
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1306 1307
}

Q
Qiao Longfei 已提交
1308
}  // namespace framework
L
liaogang 已提交
1309
}  // namespace paddle