batch_norm_op.cu 45.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <cfloat>
17 18
#include <string>
#include <vector>
19
#ifdef __NVCC__
20
#include "cub/cub.cuh"
21 22 23 24 25
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
S
Siddharth Goyal 已提交
26
#include "paddle/fluid/framework/data_layout.h"
27
#include "paddle/fluid/operators/batch_norm_op.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/operators/math/math_function.h"
29
#include "paddle/fluid/operators/norm_utils.cu.h"
K
Kexin Zhao 已提交
30
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
31

32
DECLARE_bool(cudnn_batchnorm_spatial_persistent);
W
Wu Yi 已提交
33

Q
Qiao Longfei 已提交
34 35 36 37
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
38
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
39 40
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
41
template <typename T>
K
update  
Kexin Zhao 已提交
42
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
43 44

template <typename T>
Q
QI JUN 已提交
45 46
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
47 48
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
49 50 51
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
52
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
53
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
54
    const bool is_test = ctx.Attr<bool>("is_test");
55
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
56
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
Q
QI JUN 已提交
57 58 59
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
60

61 62
    bool test_mode = is_test && (!trainable_stats);

Q
Qiao Longfei 已提交
63 64 65 66
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
ceci3 已提交
67 68 69 70 71 72
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5"
            "But received: the size of input's dimensions is [%d]",
            x_dims.size()));
Q
Qiao Longfei 已提交
73

74 75 76
    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

77 78 79 80
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

    auto dtype = platform::CudnnDataType<T>::type;
81 82 83 84 85

#ifdef PADDLE_WITH_HIP
    // HIP do not support compute format of NHWC
    auto compute_format = DataLayout::kNCHW;
#else
86
    const bool fast_nhwc_batch_norm =
87
        test_mode ||
88 89 90 91 92 93
        (dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent);

    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;
94
#endif
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    Tensor transformed_x(x->type());
    Tensor transformed_y(y->type());
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, y,
                                                           &transformed_y);
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_y.ShareDataWith(*y);
    }

112 113 114 115 116 117 118 119 120 121 122
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t data_desc_;
    miopenTensorDescriptor_t bn_param_desc_;
    miopenBatchNormMode_t mode_;

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
#else
Q
Qiao Longfei 已提交
123 124 125 126
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

127 128 129
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
Qiao Longfei 已提交
130
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
131
#endif
Q
Qiao Longfei 已提交
132 133 134 135 136 137 138

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
139 140 141 142

#ifdef PADDLE_WITH_HIP
    mode_ = miopenBNSpatial;
#elif CUDNN_VERSION_MIN(7, 0, 1)
W
Wu Yi 已提交
143 144 145 146 147
    if (FLAGS_cudnn_batchnorm_spatial_persistent) {
      mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
148
#else
Q
Qiao Longfei 已提交
149
    mode_ = CUDNN_BATCHNORM_SPATIAL;
150
#endif  // CUDNN_VERSION_MIN(7, 0, 1)
Q
Qiao Longfei 已提交
151

M
minqiyang 已提交
152
    VLOG(3) << "Setting descriptors.";
Q
Qiao Longfei 已提交
153 154
    std::vector<int> dims;
    std::vector<int> strides;
155
    if (compute_format == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
156 157 158 159 160 161
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
162 163 164 165 166 167 168 169 170 171 172

#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
        const_cast<int *>(strides.data())));
    // Note: PERSISTENT not implemented for inference
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDeriveBNTensorDescriptor(
            bn_param_desc_, data_desc_, test_mode ? miopenBNSpatial : mode_));
#else
173
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
Qiao Longfei 已提交
174 175
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
176
    // Note: PERSISTENT not implemented for inference
177 178 179
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDeriveBNTensorDescriptor(
            bn_param_desc_, data_desc_,
180
            test_mode ? CUDNN_BATCHNORM_SPATIAL : mode_));
181
#endif
Q
Qiao Longfei 已提交
182 183 184 185

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

Q
QI JUN 已提交
186
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
187

Q
QI JUN 已提交
188
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
189 190

    // Now, depending on whether we are running test or not, we have two paths.
191 192 193 194
    // It is training mode when it's not reference AND not using pre-trained
    // model.
    bool training = !test_mode && !use_global_stats;
    if (!training) {
Q
Qiao Longfei 已提交
195 196 197 198
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
C
ceci3 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      PADDLE_ENFORCE_EQ(
          est_mean->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The size of mean's dimensions must equal to 1."
              "But received: the size of mean's dimensions mean is [%d],"
              "the dimensions of mean is [%s].",
              est_mean->dims().size(), est_mean->dims()));
      PADDLE_ENFORCE_EQ(
          est_var->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The size of variance's dimensions must equal to 1."
              "But received: the size of variance's dimensions is [%d],"
              "the dimensions of variance is [%s].",
              est_var->dims().size(), est_var->dims()));
      PADDLE_ENFORCE_EQ(
          est_mean->dims()[0], C,
          platform::errors::InvalidArgument(
              "The first dimension of mean must equal to the number of "
              "Channels, which is [%d]. But received: the first dimension"
              "of mean is [%d], the dimensions of mean is [%s].",
              C, est_mean->dims()[0], est_mean->dims()));
      PADDLE_ENFORCE_EQ(
          est_var->dims()[0], C,
          platform::errors::InvalidArgument(
              "The first dimension of variance must equal to the number"
              "of Channels, which is [%d]. But received: the first dimension of"
              "variance is [%d], the dimensions of variance is [%s].",
              C, est_var->dims()[0], est_var->dims()));
Q
Qiao Longfei 已提交
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenBatchNormalizationForwardInference(
              handle, miopenBNSpatial,
              const_cast<void *>(
                  static_cast<const void *>(CudnnDataType<T>::kOne())),
              const_cast<void *>(
                  static_cast<const void *>(CudnnDataType<T>::kZero())),
              data_desc_,
              static_cast<const void *>(transformed_x.template data<T>()),
              data_desc_,
              static_cast<void *>(
                  transformed_y.template mutable_data<T>(ctx.GetPlace())),
              bn_param_desc_,
              const_cast<void *>(static_cast<const void *>(
                  scale->template data<BatchNormParamType<T>>())),
              const_cast<void *>(static_cast<const void *>(
                  bias->template data<BatchNormParamType<T>>())),
              const_cast<void *>(static_cast<const void *>(
                  est_mean->template data<BatchNormParamType<T>>())),
              const_cast<void *>(static_cast<const void *>(
                  est_var->template data<BatchNormParamType<T>>())),
              epsilon));
#else
252 253 254 255 256 257 258 259 260 261 262 263
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnBatchNormalizationForwardInference(
              handle,
              // Note: PERSISTENT not implemented for inference
              CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), data_desc_,
              transformed_x.template data<T>(), data_desc_,
              transformed_y.template mutable_data<T>(ctx.GetPlace()),
              bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
              bias->template data<BatchNormParamType<T>>(),
              est_mean->template data<BatchNormParamType<T>>(),
              est_var->template data<BatchNormParamType<T>>(), epsilon));
264
#endif
Q
Qiao Longfei 已提交
265
    } else {
266 267 268 269 270 271 272 273 274
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        Tensor mom_cpu;
        TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu);
        momentum = mom_cpu.data<float>()[0];
      }

Q
Qiao Longfei 已提交
275 276 277
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
D
Dang Qingqing 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));

293
      if ((N * H * W * D) == 1) {
294 295
        // Only 1 element in normalization dimension,
        // skip the batch norm calculation, let y = x.
296
        framework::TensorCopy(*x, ctx.GetPlace(), y);
297 298 299
      } else {
        double this_factor = 1. - momentum;

300 301
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        called = true;
        size_t workspace_size = 0;
        size_t reserve_space_size = 0;
        void *reserve_space_ptr = nullptr;
        void *workspace_ptr = nullptr;
        Tensor workspace_tensor;
        // Create reserve space and workspace for batch norm.
        // Create tensor for each batchnorm op, it will be used in the
        // backward. Thus this tensor shouldn't be temp.
        auto *reserve_space = ctx.Output<Tensor>("ReserveSpace");
        PADDLE_ENFORCE_NOT_NULL(
            reserve_space,
            platform::errors::NotFound(
                "The argument ReserveSpace of batch_norm op is not found."));

        // --------------- cudnn batchnorm workspace ---------------
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::
                cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
                    /*handle=*/handle,
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*zDesc=*/nullptr,
                    /*yDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        // -------------- cudnn batchnorm reserve space --------------
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::
                cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
                    /*handle=*/handle,
                    /*mode=*/mode_,
                    /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*activationDesc=*/nullptr,
                    /*xDesc=*/data_desc_,
                    /*sizeInBytes=*/&reserve_space_size));

        reserve_space_ptr = reserve_space->mutable_data(
            ctx.GetPlace(), transformed_x.type(), reserve_space_size);
        workspace_ptr = workspace_tensor.mutable_data(
            ctx.GetPlace(), transformed_x.type(), workspace_size);
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnBatchNormalizationForwardTrainingEx(
                handle, mode_, CUDNN_BATCHNORM_OPS_BN, CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(), data_desc_,
                transformed_x.template data<T>(), nullptr, nullptr, data_desc_,
                transformed_y.template data<T>(), bn_param_desc_,
                scale->template data<BatchNormParamType<T>>(),
                bias->template data<BatchNormParamType<T>>(), this_factor,
                mean_out->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                variance_out->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                epsilon,
                saved_mean->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                saved_variance->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                nullptr, workspace_ptr, workspace_size, reserve_space_ptr,
                reserve_space_size));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
366
        if (!called) {
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
#ifdef PADDLE_WITH_HIP
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenBatchNormalizationForwardTraining(
                  handle, mode_, const_cast<void *>(static_cast<const void *>(
                                     CudnnDataType<T>::kOne())),
                  const_cast<void *>(
                      static_cast<const void *>(CudnnDataType<T>::kZero())),
                  data_desc_,
                  static_cast<const void *>(transformed_x.template data<T>()),
                  data_desc_,
                  static_cast<void *>(
                      transformed_y.template mutable_data<T>(ctx.GetPlace())),
                  bn_param_desc_,
                  const_cast<void *>(static_cast<const void *>(
                      scale->template data<BatchNormParamType<T>>())),
                  const_cast<void *>(static_cast<const void *>(
                      bias->template data<BatchNormParamType<T>>())),
                  this_factor,
                  static_cast<void *>(
                      mean_out->template mutable_data<BatchNormParamType<T>>(
                          ctx.GetPlace())),
                  static_cast<void *>(variance_out->template mutable_data<
                                      BatchNormParamType<T>>(ctx.GetPlace())),
                  epsilon,
                  static_cast<void *>(
                      saved_mean->template mutable_data<BatchNormParamType<T>>(
                          ctx.GetPlace())),
                  static_cast<void *>(saved_variance->template mutable_data<
                                      BatchNormParamType<T>>(ctx.GetPlace()))));
#else
397
          PADDLE_ENFORCE_CUDA_SUCCESS(
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
              platform::dynload::cudnnBatchNormalizationForwardTraining(
                  handle, mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_y.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  bias->template data<BatchNormParamType<T>>(), this_factor,
                  mean_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  variance_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon,
                  saved_mean->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  saved_variance->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace())));
414
#endif
415
        }
416
      }
Q
Qiao Longfei 已提交
417 418
    }

419 420 421 422 423 424
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_y, y);
    }
425 426 427 428 429 430 431
#ifdef PADDLE_WITH_HIP
    // clean when exit.
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
#else
Q
Qiao Longfei 已提交
432
    // clean when exit.
433 434 435
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
Qiao Longfei 已提交
436
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
437
#endif
Q
Qiao Longfei 已提交
438 439 440
  }
};

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ void KeBNBackwardScaleBias(
    const T *dy, const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const double epsilon, const int N,
    const int C, const int HxW, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    BatchNormParamType<T> inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    BatchNormParamType<T> mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += static_cast<BatchNormParamType<T>>(dy[index]) *
                (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
      db_sum += static_cast<BatchNormParamType<T>>(dy[index]);
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale[i] = ds_sum * inv_var_i;
      dbias[i] = db_sum;
    }
    __syncthreads();
  }
}

Q
qingqing01 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
template <typename T, framework::DataLayout layout>
static __global__ void KeBNBackwardData(const T *dy,
                                        const BatchNormParamType<T> *scale,
                                        const BatchNormParamType<T> *variance,
                                        const double epsilon, const int C,
                                        const int HxW, const int num, T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> inv_var = 1.0 / sqrt(variance[c] + epsilon);
    dx[i] = static_cast<T>(static_cast<BatchNormParamType<T>>(dy[i]) *
                           scale[c] * inv_var);
  }
}

K
Kaipeng Deng 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
template <typename T>
static __global__ void KeBNRestoreData(const framework::DataLayout layout, T *x,
                                       const BatchNormParamType<T> *scale,
                                       const BatchNormParamType<T> *bias,
                                       const BatchNormParamType<T> *mean,
                                       const BatchNormParamType<T> *variance,
                                       double epsilon, int C, int M,
                                       const int num, const T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? (i / M) % C : i % C;
    auto y_i = static_cast<BatchNormParamType<T>>(y[i]);
    auto x_i = (y_i - bias[c]) / scale[c] / variance[c] + mean[c];
    x[i] = static_cast<T>(x_i);
  }
}

template <typename T>
class InplaceHelper {
 public:
  void operator()(const framework::DataLayout layout, T *x,
                  const BatchNormParamType<T> *scale,
                  const BatchNormParamType<T> *bias,
                  const BatchNormParamType<T> *mean,
                  const BatchNormParamType<T> *variance, double epsilon, int C,
                  int M, const int num, const T *y, int grid2, const int block,
520
                  const gpuStream_t &stream) {
K
Kaipeng Deng 已提交
521 522 523 524 525 526 527
    PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
                                "X and Y should be inplaced in inplace mode"));
    KeBNRestoreData<<<grid2, block, 0, stream>>>(
        layout, x, scale, bias, mean, variance, epsilon, C, M, num, y);
  }
};

L
lvmengsi 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ void BNBackwardData(const T *dy,
                                      const BatchNormParamType<T> *scale,
                                      const BatchNormParamType<T> *mean,
                                      const T *x,
                                      const BatchNormParamType<T> *variance,
                                      const int C, const int N, const int HxW,
                                      T *dx) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_x_sub_mean_storage;
  __shared__ BatchNormParamType<T> dy_sum_val;
  __shared__ BatchNormParamType<T> dy_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> inv_var_i = variance[i];
    BatchNormParamType<T> mean_i = mean[i];
    BatchNormParamType<T> dy_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> dy_x_sub_mean_sum =
        static_cast<BatchNormParamType<T>>(0);
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      dy_sum += dy_i;
      dy_x_sub_mean_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
    }

    dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
    dy_x_sub_mean_sum = BlockReduce(dy_x_sub_mean_storage)
                            .Reduce(dy_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      dy_sum_val = dy_sum;
      dy_x_sub_mean_sum_val = dy_x_sub_mean_sum;
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] =
          (static_cast<BatchNormParamType<T>>(dy[index]) -
           dy_sum_val / static_cast<BatchNormParamType<T>>(inner_size) -
           (static_cast<BatchNormParamType<T>>(x[index]) - mean_i) *
               dy_x_sub_mean_sum_val * inv_var_i * inv_var_i / inner_size) *
          scale[i] * inv_var_i;
    }
  }
}

Q
Qiao Longfei 已提交
585
template <typename T>
Q
QI JUN 已提交
586
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
587 588 589
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
590 591 592
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
593
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
594
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
595 596
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

Q
QI JUN 已提交
597 598
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
599 600
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
K
Kaipeng Deng 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
      PADDLE_ENFORCE_EQ(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD not inplace in inplace mode"));
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
      PADDLE_ENFORCE_NE(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
    }

627 628 629 630 631 632 633
    const bool is_test = ctx.Attr<bool>("is_test");
    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));
Q
Qiao Longfei 已提交
634 635 636

    const auto &x_dims = x->dims();

C
ceci3 已提交
637 638 639 640 641 642 643
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5."
            "But received: the size of input's dimensions is [%d],"
            "the dimensions of input is [%s]",
            x_dims.size(), x_dims));
Q
Qiao Longfei 已提交
644
    int N, C, H, W, D;
Q
QI JUN 已提交
645
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
646

647 648
    // init output
    d_x->mutable_data<T>(ctx.GetPlace());
K
Kaipeng Deng 已提交
649

650 651 652
    if (d_scale && d_bias) {
      d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
653
    }
C
ceci3 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666
    PADDLE_ENFORCE_EQ(
        scale->dims().size(), 1UL,
        platform::errors::InvalidArgument(
            "The size of scale's dimensions must equal to 1. But received: "
            "the size of scale's dimensions is [%d], the dimensions of scale "
            "is [%s].",
            scale->dims().size(), scale->dims()));
    PADDLE_ENFORCE_EQ(
        scale->dims()[0], C,
        platform::errors::InvalidArgument(
            "The first dimension of scale must equal to Channels[%d]. But "
            "received: the first dimension of scale is [%d]",
            C, scale->dims()[0]));
Q
Qiao Longfei 已提交
667

668 669
    auto dtype = platform::CudnnDataType<T>::type;
    const auto *reserve_space = ctx.Input<Tensor>("ReserveSpace");
670 671 672 673
#ifdef PADDLE_WITH_HIP
    // HIP do not support compute format of NHWC
    auto compute_format = DataLayout::kNCHW;
#else
674 675 676 677 678 679 680
    const bool fast_nhwc_batch_norm =
        dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent &&
        reserve_space != nullptr;
    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;
681
#endif
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    Tensor transformed_x(x->type());
    Tensor transformed_d_y(d_y->type());
    Tensor transformed_d_x(d_x->type());
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                           &transformed_d_y);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                          &transformed_d_y);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_x,
                                                           &transformed_d_x);
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_d_y.ShareDataWith(*d_y);
      transformed_d_x.ShareDataWith(*d_x);
    }

Z
zchen0211 已提交
705 706
    std::vector<int> dims;
    std::vector<int> strides;
707
    if (compute_format == DataLayout::kNCHW) {
Z
zchen0211 已提交
708 709 710 711 712 713
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
714

715
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
716
    const int num = transformed_x.numel();
L
lvmengsi 已提交
717 718 719 720 721
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid1 = (num + block - 1) / block;
    int grid2 = std::min(C, max_blocks);
K
Kaipeng Deng 已提交
722 723
    auto stream = dev_ctx.stream();
    InplaceHelper<T> inplace_functor;
L
lvmengsi 已提交
724

725 726 727 728 729 730 731 732 733 734
    if (!use_global_stats) {
      if ((N * H * W * D) == 1) {
        framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
        math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
            functor;
        functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
        functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
        return;
      }

735 736 737 738 739 740 741 742 743 744 745
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
      miopenTensorDescriptor_t data_desc_;
      miopenTensorDescriptor_t bn_param_desc_;
      miopenBatchNormMode_t mode_;

      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
#else
746 747 748 749
      cudnnTensorDescriptor_t data_desc_;
      cudnnTensorDescriptor_t bn_param_desc_;
      cudnnBatchNormMode_t mode_;

750
      PADDLE_ENFORCE_CUDA_SUCCESS(
751
          platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
752
      PADDLE_ENFORCE_CUDA_SUCCESS(
753
          platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
754
#endif
755 756 757 758 759 760
      if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
        LOG(ERROR) << "Provided epsilon is smaller than "
                   << "CUDNN_BN_MIN_EPSILON. Setting it to "
                   << "CUDNN_BN_MIN_EPSILON instead.";
      }
      epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
761 762 763
#ifdef PADDLE_WITH_HIP
      mode_ = miopenBNSpatial;
#elif CUDNN_VERSION_MIN(7, 0, 1)
W
Wu Yi 已提交
764 765 766 767 768
      if (FLAGS_cudnn_batchnorm_spatial_persistent) {
        mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
      } else {
        mode_ = CUDNN_BATCHNORM_SPATIAL;
      }
769
#else
770
      mode_ = CUDNN_BATCHNORM_SPATIAL;
771
#endif  // CUDNN_VERSION_MIN(7, 0, 1)
772

773 774 775 776 777 778 779 780 781
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
          data_desc_, CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
          const_cast<int *>(strides.data())));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenDeriveBNTensorDescriptor(bn_param_desc_,
                                                            data_desc_, mode_));
#else
782
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
783 784
          data_desc_, CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
785 786 787
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnDeriveBNTensorDescriptor(bn_param_desc_,
                                                           data_desc_, mode_));
788
#endif
789 790 791

      const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
      const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
L
lvmengsi 已提交
792
      const auto *saved_mean_data =
793
          saved_mean->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
794
      const auto *saved_var_data =
795 796
          saved_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
797 798 799 800 801 802 803 804
      if (is_inplace) {
        inplace_functor(compute_format, transformed_x.data<T>(),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        saved_mean_data, saved_var_data, epsilon, C, H * W * D,
                        num, transformed_x.data<T>(), grid2, block, stream);
      }

805
      // This branch calls CUDNN APIs
L
lvmengsi 已提交
806
      if (d_scale && d_bias) {
807 808
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
        called = true;
        size_t workspace_size = 0;
        void *workspace_ptr = nullptr;
        Tensor workspace_tensor;
        auto reserve_space_size = reserve_space->memory_size();
        // --------------- cudnn batchnorm workspace ---------------
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::
                cudnnGetBatchNormalizationBackwardExWorkspaceSize(
                    /*handle=*/dev_ctx.cudnn_handle(),
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*yDesc=*/data_desc_,
                    /*dyDesc=*/data_desc_,
                    /*dzDesc=*/nullptr,
                    /*dxDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        workspace_ptr = workspace_tensor.mutable_data(
            ctx.GetPlace(), transformed_x.type(), workspace_size);

        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnBatchNormalizationBackwardEx(
                /*handle=*/dev_ctx.cudnn_handle(),
                /*mode=*/mode_,
                /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                /*alphaDataDiff=*/CudnnDataType<T>::kOne(),
                /*betaDataDiff=*/CudnnDataType<T>::kZero(),
                /*alphaParamDiff=*/CudnnDataType<T>::kOne(),
                /*betaParamDiff=*/CudnnDataType<T>::kZero(),
                /*xDesc=*/data_desc_,
                /*xData=*/transformed_x.template data<T>(),
                /*yDesc=*/nullptr,
                /*yData=*/nullptr,
                /*dyDesc=*/data_desc_,
                /*dyData=*/transformed_d_y.template data<T>(),
                /*dzDesc=*/nullptr,
                /*dzData=*/nullptr,
                /*dxDesc=*/data_desc_,
                /*dxData=*/transformed_d_x.template mutable_data<T>(
                    ctx.GetPlace()),
                /*dBnScaleBiasDesc=*/bn_param_desc_,
                /*bnScaleData=*/scale->template data<BatchNormParamType<T>>(),
                /*bnBiasData=*/nullptr,
                /*dBnScaleData=*/d_scale
                    ->template mutable_data<BatchNormParamType<T>>(
                        ctx.GetPlace()),
                /*dBnBiasData=*/d_bias
                    ->template mutable_data<BatchNormParamType<T>>(
                        ctx.GetPlace()),
                /*epsilon=*/epsilon,
                /*savedMean=*/saved_mean_data,
                /*savedInvVariance=*/saved_var_data,
                /*activationDesc=*/nullptr,
                /*workspace=*/workspace_ptr,
                /*workSpaceSizeInBytes=*/workspace_size,
                /*reserveSpace=*/const_cast<T *>(
                    reserve_space->template data<T>()),
                /*reserveSpaceSizeInBytes=*/reserve_space_size));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
872
        if (!called) {
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
#ifdef PADDLE_WITH_HIP
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenBatchNormalizationBackward(
                  dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_d_y.template data<T>(), data_desc_,
                  transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  d_scale->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  d_bias->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon, saved_mean_data, saved_var_data));
#else
889 890 891 892 893 894 895 896 897 898 899 900 901 902
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnBatchNormalizationBackward(
                  dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_d_y.template data<T>(), data_desc_,
                  transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  d_scale->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  d_bias->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon, saved_mean_data, saved_var_data));
903
#endif
904 905 906 907 908 909 910 911
        }

        if (data_layout == DataLayout::kNHWC &&
            compute_format == DataLayout::kNCHW) {
          VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
          TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
              ctx, &transformed_d_x, d_x);
        }
L
lvmengsi 已提交
912
      } else {
913
        // This branch call CUDA kernels
914
        if (compute_format == DataLayout::kNCHW) {
L
lvmengsi 已提交
915 916 917 918 919 920 921 922 923
          if (d_x) {
            BNBackwardData<T, block, framework::DataLayout::kNCHW><<<
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
        } else {
          if (d_x) {
L
Lv Mengsi 已提交
924
            BNBackwardData<T, block, framework::DataLayout::kNHWC><<<
L
lvmengsi 已提交
925 926 927 928 929 930 931
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
        }
      }
932

933 934 935 936 937 938 939
#ifdef PADDLE_WITH_HIP
      // clean when exit.
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
#else
940
      // clean when exit.
941
      PADDLE_ENFORCE_CUDA_SUCCESS(
942
          platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
943
      PADDLE_ENFORCE_CUDA_SUCCESS(
944
          platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
945
#endif
946 947 948 949 950 951 952 953 954
    } else {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_var = ctx.Input<Tensor>("Variance");

      const auto *running_mean_data =
          running_mean->template data<BatchNormParamType<T>>();
      const auto *running_var_data =
          running_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
955 956 957 958 959 960 961 962 963
      if (is_inplace) {
        auto px = *x;
        inplace_functor(data_layout, px.mutable_data<T>(ctx.GetPlace()),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        running_mean_data, running_var_data, epsilon, C,
                        H * W * D, num, x->data<T>(), grid2, block, stream);
      }

964
      if (compute_format == DataLayout::kNCHW) {
965
        if (d_x) {
K
Kaipeng Deng 已提交
966 967
          KeBNBackwardData<
              T, framework::DataLayout::kNCHW><<<grid1, block, 0, stream>>>(
968 969 970 971
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
972 973 974
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
975
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
976
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
977 978 979 980
              d_bias->data<BatchNormParamType<T>>());
        }
      } else {
        if (d_x) {
K
Kaipeng Deng 已提交
981 982
          KeBNBackwardData<
              T, framework::DataLayout::kNHWC><<<grid1, block, 0, stream>>>(
983 984 985 986
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
987 988 989
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
990
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
991
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
992 993 994 995
              d_bias->data<BatchNormParamType<T>>());
        }
      }
    }
Q
Qiao Longfei 已提交
996 997 998
  }
};

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
template <typename T>
class BatchNormDoubleGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool is_test = ctx.Attr<bool>("is_test");

    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

    NormDoubleGradFunctor<platform::CUDADeviceContext, T>(
        ctx, data_layout, X, Scale, dY, Saved_mean, Saved_variance, epsilon,
        use_global_stats, ddX, ddScale, ddBias, dX, dScale, ddY);
  }
};

Q
Qiao Longfei 已提交
1038 1039 1040 1041
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
1042
namespace plat = paddle::platform;
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad_grad,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, float>);
#else
Q
QI JUN 已提交
1055
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
1056
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
1057
    ops::BatchNormKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
1058
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
1059
REGISTER_OP_CUDA_KERNEL(
D
dzhwinter 已提交
1060
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
C
chengduo 已提交
1061 1062
    ops::BatchNormGradKernel<plat::CUDADeviceContext, double>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
1063 1064 1065 1066
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad_grad,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, double>);
1067
#endif