fake_quantize_op.cc 41.4 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
16

17
#include <algorithm>
视言's avatar
视言 已提交
18
#include <string>
19

20
#include "paddle/fluid/framework/eigen.h"
21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/platform/transform.h"
W
wuyefeilin 已提交
23
#include "paddle/phi/kernels/impl/clip_kernel_impl.h"
视言's avatar
视言 已提交
24 25 26 27

namespace paddle {
namespace operators {

28 29 30 31 32
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
33 34 35

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
36 37 38 39
  void operator()(const platform::CPUDeviceContext &ctx,
                  const T *in,
                  const int num,
                  T *out) {
40
    *out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
41 42 43 44 45
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

46 47
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
48 49 50 51
  void operator()(const platform::CPUDeviceContext &ctx,
                  const framework::Tensor &in_tensor,
                  const int quant_axis,
                  T *out_abs_max) {
52 53 54
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
55 56
        quant_axis == 0 || quant_axis == 1,
        true,
57 58 59
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
60
    auto *in_data = in_tensor.data<T>();
61 62 63 64 65
    auto in_dims = in_tensor.dims();
    const int64_t channel = in_dims[quant_axis];
    if (quant_axis == 0) {
      const int64_t channel_size = in_tensor.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
66 67
        auto *start = in_data + i * channel_size;
        auto *end = in_data + (i + 1) * channel_size;
68 69 70 71 72 73 74 75 76 77 78
        out_abs_max[i] =
            std::abs(*(std::max_element(start, end, Compare<T>())));
      }
    } else if (quant_axis == 1) {
      for (int64_t i = 0; i < channel; i++) {
        out_abs_max[i] = 0;
      }
      const int64_t step_i = in_tensor.numel() / in_dims[0];
      const int64_t step_j = in_tensor.numel() / (in_dims[0] * in_dims[1]);
      for (int64_t i = 0; i < in_dims[0]; i++) {
        for (int64_t j = 0; j < in_dims[1]; j++) {
79 80
          auto *start = in_data + i * step_i + j * step_j;
          auto *end = in_data + i * step_i + (j + 1) * step_j;
81 82 83 84
          T abs_max = std::abs(*(std::max_element(start, end, Compare<T>())));
          out_abs_max[j] = std::max(out_abs_max[j], abs_max);
        }
      }
85 86 87 88 89 90
    }
  }
};

template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;

91 92
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
93 94 95 96 97 98
  void operator()(const platform::CPUDeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  framework::Tensor *out) {
99
    T s = scale.data<T>()[0];
100
    T inv_s = inverse(s);
101
    platform::Transform<platform::CPUDeviceContext> trans;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    if (round_type == 0) {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
    } else {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            phi::ClipFunctor<T>(-s, s));
      auto out_e = framework::EigenVector<T>::Flatten(*out);
      out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
    }
117 118 119 120 121
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

122 123
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
124 125 126 127 128 129
  void operator()(const platform::CPUDeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  framework::Tensor *out) {
130
    T s = scale.data<T>()[0];
131 132
    T inv_s = inverse(s);

133
    platform::Transform<platform::CPUDeviceContext> trans;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    if (round_type == 0) {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
      auto out_e = framework::EigenVector<T>::Flatten(*out);
      out_e.device(*ctx.eigen_device()) = out_e * s / static_cast<T>(bin_cnt);
    } else {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            phi::ClipFunctor<T>(-s, s));
      auto out_e = framework::EigenVector<T>::Flatten(*out);
      out_e.device(*ctx.eigen_device()) =
          (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
    }
152 153 154 155 156
  }
};
template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                               float>;

157 158
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
159 160 161 162 163 164 165
  void operator()(const platform::CPUDeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  const int quant_axis,
                  framework::Tensor *out) {
166 167 168
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
169 170
        quant_axis == 0 || quant_axis == 1,
        true,
171 172 173
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
174 175 176
    auto *scale_data = scale.data<T>();
    auto *in_data = in.data<T>();
    auto *out_data = out->mutable_data<T>(ctx.GetPlace());
177 178
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
179
    platform::Transform<platform::CPUDeviceContext> trans;
180 181 182 183
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
184 185
        auto *start = in_data + i * channel_size;
        auto *end = in_data + (i + 1) * channel_size;
186
        T inv_s = inverse(s);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        if (round_type == 0) {
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
        } else {
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                phi::ClipFunctor<T>(-s, s));
        }
      }
      if (round_type == 1) {
        for (int64_t i = 0; i < channel; i++) {
          T s = scale_data[i];
          T inv_s = inverse(s);
          framework::Tensor one_channel_out = out->Slice(i, i + 1);
          auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
          out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
        }
209 210 211 212 213 214 215 216
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
          auto *start = in_data + i * step_i + j * step_j;
          auto *end = in_data + i * step_i + (j + 1) * step_j;
          auto *cur_out_data = out_data + i * step_i + j * step_j;
          if (round_type == 0) {
            trans(ctx,
                  start,
                  end,
                  cur_out_data,
                  QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
          } else {
            trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
            for (int k = 0; k < step_j; k++) {
              cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]);
            }
          }
232 233
        }
      }
234 235 236 237 238 239
    }
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
                                               float>;
H
huangxu96 已提交
240 241
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
242 243 244 245 246 247 248
  void operator()(const platform::CPUDeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  const int quant_axis,
                  framework::Tensor *out) {
H
huangxu96 已提交
249
    PADDLE_ENFORCE_EQ(
250 251
        quant_axis == 0 || quant_axis == 1,
        true,
H
huangxu96 已提交
252 253 254
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
255

256 257 258
    auto *scale_data = scale.data<T>();
    auto *in_data = in.data<T>();
    auto *out_data = out->mutable_data<T>(ctx.GetPlace());
H
huangxu96 已提交
259 260 261 262 263 264 265
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
    platform::Transform<platform::CPUDeviceContext> trans;
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        auto *start = in_data + i * channel_size;
        auto *end = in_data + (i + 1) * channel_size;
        if (round_type == 0) {
          T inv_s = inverse(s);
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
        } else {
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                phi::ClipFunctor<T>(-s, s));
        }
      }
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
H
huangxu96 已提交
285 286
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
287 288 289 290 291 292 293 294
        if (round_type == 0) {
          out_e.device(*ctx.eigen_device()) =
              out_e * s / static_cast<T>(bin_cnt);
        } else {
          T inv_s = inverse(s);
          out_e.device(*ctx.eigen_device()) =
              (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
        }
H
huangxu96 已提交
295 296 297 298 299 300 301 302
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
303 304 305 306 307 308 309 310 311 312 313 314
          auto *start = in_data + i * step_i + j * step_j;
          auto *end = in_data + i * step_i + (j + 1) * step_j;
          auto *cur_out_data = out_data + i * step_i + j * step_j;
          if (round_type == 0) {
            trans(ctx,
                  start,
                  end,
                  cur_out_data,
                  QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
          } else {
            trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
          }
H
huangxu96 已提交
315
          for (int k = 0; k < step_j; k++) {
316 317 318 319 320 321
            if (round_type == 0) {
              cur_out_data[k] = cur_out_data[k] * s / static_cast<T>(bin_cnt);
            } else {
              cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]) *
                                s / static_cast<T>(bin_cnt);
            }
H
huangxu96 已提交
322 323 324 325 326 327 328 329 330
          }
        }
      }
    }
  }
};

template struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                                   float>;
331 332
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
333 334 335 336 337 338 339 340
  void operator()(const platform::CPUDeviceContext &ctx,
                  const framework::Tensor &cur_scale,
                  const framework::Tensor &last_scale,
                  const framework::Tensor &iter,
                  const int window_size,
                  framework::Tensor *scales_arr,
                  framework::Tensor *out_scale) {
    T *scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
341 342 343 344 345 346 347 348 349 350 351
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
352 353
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(
          ctx, scale_arr, size, &max);
354 355 356 357 358 359 360
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

361 362
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
363 364 365 366 367 368 369 370
  void operator()(const platform::CPUDeviceContext &ctx,
                  const framework::Tensor &in_accum,
                  const framework::Tensor &in_state,
                  const T *cur_scale,
                  const float rate,
                  framework::Tensor *out_state,
                  framework::Tensor *out_accum,
                  framework::Tensor *out_scale) {
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    T accum = in_accum.data<T>()[0];
    T state = in_state.data<T>()[0];
    T scale = cur_scale[0];

    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    out_state->mutable_data<T>(ctx.GetPlace())[0] = state;
    out_accum->mutable_data<T>(ctx.GetPlace())[0] = accum;
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = scale;
  }
};

template struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext,
                                               float>;

388
class FakeQuantOrWithDequantAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
389
 public:
390 391 392 393
  FakeQuantOrWithDequantAbsMaxOp(const std::string &type,
                                 const framework::VariableNameMap &inputs,
                                 const framework::VariableNameMap &outputs,
                                 const framework::AttributeMap &attrs)
视言's avatar
视言 已提交
394 395
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

396 397 398 399 400 401
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "FakeQuantOrWithDequantAbsMaxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
402
                   "FakeQuantOrWithDequantAbsMaxOp");
403 404 405
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
406
                   "FakeQuantOrWithDequantAbsMaxOp");
视言's avatar
视言 已提交
407
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
408
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
409 410
    ctx->ShareLoD("X", /*->*/ "Out");
  }
411 412 413

 protected:
  framework::OpKernelType GetExpectedKernelType(
414
      const framework::ExecutionContext &ctx) const override {
415 416 417
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
418
  }
视言's avatar
视言 已提交
419 420
};

421 422
class FakeQuantOrWithDequantAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
423 424
 public:
  void Make() override {
425 426 427 428 429
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
430 431
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
432 433 434
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
435 436 437 438
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
视言's avatar
视言 已提交
439
        });
440 441
    AddAttr<int>(
        "round_type",
442
        "(int, default 1) The round type of fp32 to int."
443 444 445
        "0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
        "1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
        "round(2.5)=3")
446 447 448 449 450 451 452 453 454 455 456 457
        .SetDefault(1)
        .AddCustomChecker([](const int &round_type) {
          PADDLE_ENFORCE_EQ(
              round_type == 0 || round_type == 1,
              true,
              platform::errors::InvalidArgument(
                  "'round_type' should be 0 or 1, 0 rounding to "
                  "nearest ties to even and 1 is rounding to nearest "
                  "ties away from zero.but the received is %d",
                  round_type));
        })
        .AsExtra();
视言's avatar
视言 已提交
458
    AddComment(R"DOC(
459
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
460
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
视言's avatar
视言 已提交
461

462
$$scale = max(abs(X))$$
463 464
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
465

466
FakeQuantDequantAbsMaxOp operator does the abs_max quantization and then dequantization.
467 468 469 470 471

$$scale = max(abs(X))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

472 473 474
)DOC");
  }
};
视言's avatar
视言 已提交
475

Z
Zhen Wang 已提交
476 477 478 479
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

480 481 482 483 484 485
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
486
                   "FakeChannelWiseQuantizeAbsMax");
487 488 489
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
490
                   "FakeChannelWiseQuantizeAbsMax");
491
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
Z
Zhen Wang 已提交
492
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
493
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
Z
Zhen Wang 已提交
494 495 496 497 498
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
499
      const framework::ExecutionContext &ctx) const override {
500 501
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
502 503 504 505 506 507 508 509 510 511 512
  }
};

class FakeChannelWiseQuantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
513
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
514 515 516 517 518
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
519 520 521
        .AddCustomChecker([](const int &quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1,
                            true,
522 523 524 525 526
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
Z
Zhen Wang 已提交
527 528
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
529 530 531
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
532 533 534 535
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
Z
Zhen Wang 已提交
536
        });
537 538
    AddAttr<int>(
        "round_type",
539
        "(int, default 1) The round type of fp32 to int."
540 541 542
        "0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
        "1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
        "round(2.5)=3")
543 544 545 546 547 548 549 550 551 552 553 554
        .SetDefault(1)
        .AddCustomChecker([](const int &round_type) {
          PADDLE_ENFORCE_EQ(
              round_type == 0 || round_type == 1,
              true,
              platform::errors::InvalidArgument(
                  "'round_type' should be 0 or 1, 0 rounding to "
                  "nearest ties to even and 1 is rounding to nearest "
                  "ties away from zero.but the received is %d",
                  round_type));
        })
        .AsExtra();
555 556 557 558
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Z
Zhen Wang 已提交
559 560 561 562 563
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
Z
Zhen Wang 已提交
564 565
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
Z
Zhen Wang 已提交
566
In above three formulas, the range value of c is as follow:
Z
Zhen Wang 已提交
567
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Z
Zhen Wang 已提交
568 569 570 571
)DOC");
  }
};

H
huangxu96 已提交
572 573 574 575 576
class FakeChannelWiseQuantizeDequantizeAbsMaxOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

577 578 579 580
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"),
                   "Input",
                   "X",
H
huangxu96 已提交
581
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
582 583 584
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
H
huangxu96 已提交
585
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
586 587 588
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
H
huangxu96 已提交
589 590 591 592 593 594 595 596 597
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
598
      const framework::ExecutionContext &ctx) const override {
H
huangxu96 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized and dequantized low level tensor, "
              "saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
618 619 620
        .AddCustomChecker([](const int &quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1,
                            true,
H
huangxu96 已提交
621 622 623 624 625 626 627
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
628 629 630
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
H
huangxu96 已提交
631 632 633 634 635
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
        });
636 637
    AddAttr<int>(
        "round_type",
638
        "(int, default 1) The round type of fp32 to int."
639 640 641
        "0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
        "1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
        "round(2.5)=3")
642 643 644 645 646 647 648 649 650 651 652 653
        .SetDefault(1)
        .AddCustomChecker([](const int &round_type) {
          PADDLE_ENFORCE_EQ(
              round_type == 0 || round_type == 1,
              true,
              platform::errors::InvalidArgument(
                  "'round_type' should be 0 or 1, 0 rounding to "
                  "nearest ties to even and 1 is rounding to nearest "
                  "ties away from zero.but the received is %d",
                  round_type));
        })
        .AsExtra();
H
huangxu96 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c}) * \frac{scale_c} {range}$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

667 668
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
669 670 671 672
  FakeQuantizeRangeAbsMaxOp(const std::string &type,
                            const framework::VariableNameMap &inputs,
                            const framework::VariableNameMap &outputs,
                            const framework::AttributeMap &attrs)
673
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
674

675
  void InferShape(framework::InferShapeContext *ctx) const override {
676
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeQuantizeRangeAbsMax");
677 678 679 680 681
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
682
                   "FakeQuantizeRangeAbsMax");
683 684 685 686 687 688 689 690
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
691

692 693
 protected:
  framework::OpKernelType GetExpectedKernelType(
694
      const framework::ExecutionContext &ctx) const override {
695 696 697
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
698 699
  }
};
视言's avatar
视言 已提交
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
715 716 717
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
718 719 720 721
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
722
        });
723 724
    AddAttr<int>(
        "round_type",
725
        "(int, default 1) The round type of fp32 to int."
726 727 728
        "0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
        "1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
        "round(2.5)=3")
729 730 731 732 733 734 735 736 737 738 739 740
        .SetDefault(1)
        .AddCustomChecker([](const int &round_type) {
          PADDLE_ENFORCE_EQ(
              round_type == 0 || round_type == 1,
              true,
              platform::errors::InvalidArgument(
                  "'round_type' should be 0 or 1, 0 rounding to "
                  "nearest ties to even and 1 is rounding to nearest "
                  "ties away from zero.but the received is %d",
                  round_type));
        })
        .AsExtra();
741 742 743 744
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
745 746
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
747

748
$$scale = max(max(abs(x)), history_abs_max)$$
749 750
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
751 752 753 754 755

)DOC");
  }
};

756 757
class FakeQuantOrWithDequantMovingAverageAbsMaxOp
    : public framework::OperatorWithKernel {
758
 public:
759
  FakeQuantOrWithDequantMovingAverageAbsMaxOp(
760 761 762 763
      const std::string &type,
      const framework::VariableNameMap &inputs,
      const framework::VariableNameMap &outputs,
      const framework::AttributeMap &attrs)
764 765
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

766 767 768 769
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"),
                   "Input",
                   "X",
770
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
771 772 773
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
774
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
775 776 777
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
778
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
779 780 781 782 783 784 785 786 787 788 789 790 791
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
792
      const framework::ExecutionContext &ctx) const override {
793 794 795
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
796 797 798
  }
};

799
class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
815 816 817
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
818 819 820 821
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
822
        });
823 824
    AddAttr<int>(
        "round_type",
825
        "(int, default 1) The round type of fp32 to int."
826 827 828
        "0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
        "1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
        "round(2.5)=3")
829 830 831 832 833 834 835 836 837 838 839 840
        .SetDefault(1)
        .AddCustomChecker([](const int &round_type) {
          PADDLE_ENFORCE_EQ(
              round_type == 0 || round_type == 1,
              true,
              platform::errors::InvalidArgument(
                  "'round_type' should be 0 or 1, 0 rounding to "
                  "nearest ties to even and 1 is rounding to nearest "
                  "ties away from zero.but the received is %d",
                  round_type));
        })
        .AsExtra();
841 842 843 844 845
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
846
This is a Base Op which supports FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp.
847
FakeQuantMovingAverageAbsMaxOp operator is used in the static quantization.
848

Z
Zhen Wang 已提交
849 850
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
851 852
$$Out = round(X/scale * range)$$

853
FakeQuantDequantMovingAverageAbsMaxOp operator does the moving_average_abs_max quant and then dequant.
854 855 856 857 858

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

859 860 861 862
)DOC");
  }
};

Z
Zhen Wang 已提交
863 864 865 866
class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

867 868 869 870 871 872
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "MovingAverageAbsMaxScale");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
873
                   "MovingAverageAbsMaxScale");
874

Z
Zhen Wang 已提交
875 876 877 878 879 880
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
881 882 883 884 885
    if (ctx->HasOutput("Out")) {
      ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
      ctx->SetOutputDim("OutScale", {1});
      ctx->ShareLoD("X", /*->*/ "Out");
    }
Z
Zhen Wang 已提交
886 887 888 889
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
890
      const framework::ExecutionContext &ctx) const override {
891 892
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
893 894 895 896 897 898 899 900 901 902
  }
};

class MovingAverageAbsMaxScaleOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
903 904 905
    AddOutput("Out",
              "(Tensor) Output tensor is just equivalent to the input tensor.")
        .AsDispensable();
Z
Zhen Wang 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set true for inference only and false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
MovingAverageAbsMaxScale operator is only used for calculating the quantization scale.
And it will not quantize the input tensor.

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$Out = X$$

)DOC");
  }
};

926
class StrightThroughEstimatorGradOp : public framework::OperatorWithKernel {
927 928 929
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

930
  void InferShape(framework::InferShapeContext *ctx) const override {
931
    auto out_grad_name = framework::GradVarName("Out");
932
    auto x_grad_name = framework::GradVarName("X");
933 934 935
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name),
                   "Input",
                   out_grad_name,
936
                   "StrightThroughEstimatorGradOp");
937 938 939
    OP_INOUT_CHECK(ctx->HasOutput(x_grad_name),
                   "Output",
                   x_grad_name,
940
                   "StrightThroughEstimatorGradOp");
941 942 943 944 945

    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name));
  }

  framework::OpKernelType GetExpectedKernelType(
946
      const framework::ExecutionContext &ctx) const override {
947 948 949 950 951 952 953
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
954
class StrightThroughEstimatorMaker : public framework::SingleGradOpMaker<T> {
955 956 957 958 959
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
960
    grad_op->SetType("stright_throuth_estimator_grad");
961 962 963 964 965 966
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

视言's avatar
视言 已提交
967 968 969 970
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
971 972
using CPU = paddle::platform::CPUDeviceContext;

H
hong 已提交
973
REGISTER_OPERATOR(
974 975
    fake_quantize_abs_max,
    ops::FakeQuantOrWithDequantAbsMaxOp,
976
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
H
hong 已提交
977 978
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
979 980
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
981

982
REGISTER_OPERATOR(
983 984
    fake_quantize_dequantize_abs_max,
    ops::FakeQuantOrWithDequantAbsMaxOp,
985 986 987
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
988 989 990
REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_abs_max,
                       ops::FakeQuantizeDequantizeAbsMaxKernel<CPU, float>);

H
hong 已提交
991
REGISTER_OPERATOR(
992 993
    fake_quantize_range_abs_max,
    ops::FakeQuantizeRangeAbsMaxOp,
H
hong 已提交
994 995 996
    ops::FakeQuantizeRangeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
997 998
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
999

H
hong 已提交
1000 1001 1002 1003 1004 1005
REGISTER_OPERATOR(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
1006 1007
REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max,
                       ops::FakeQuantizeMovingAverageAbsMaxKernel<CPU, float>);
1008

1009 1010 1011 1012 1013 1014
REGISTER_OPERATOR(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
1015 1016 1017 1018
REGISTER_OP_CPU_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);

H
hong 已提交
1019
REGISTER_OPERATOR(
1020 1021
    fake_channel_wise_quantize_abs_max,
    ops::FakeChannelWiseQuantizeAbsMaxOp,
H
hong 已提交
1022 1023 1024
    ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
1025 1026
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
                       ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
1027

H
hong 已提交
1028
REGISTER_OPERATOR(
1029 1030
    moving_average_abs_max_scale,
    ops::MovingAverageAbsMaxScaleOp,
H
hong 已提交
1031
    ops::MovingAverageAbsMaxScaleOpMaker,
1032 1033
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
1034 1035
REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale,
                       ops::MovingAverageAbsMaxScaleKernel<CPU, float>);
1036

1037 1038 1039 1040
REGISTER_OPERATOR(stright_throuth_estimator_grad,
                  ops::StrightThroughEstimatorGradOp);
REGISTER_OP_CPU_KERNEL(stright_throuth_estimator_grad,
                       ops::StrightThroughEstimatorGradKernel<CPU, float>);
H
huangxu96 已提交
1041

1042 1043 1044 1045 1046 1047
REGISTER_OPERATOR(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxOp,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
H
huangxu96 已提交
1048 1049 1050
REGISTER_OP_CPU_KERNEL(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CPU, float>);
1051 1052 1053 1054 1055 1056 1057

REGISTER_OP_VERSION(fake_channel_wise_quantize_abs_max)
    .AddCheckpoint(
        R"ROC(add new attributes [quant_axis] for applying per-channel "
        "quantization to conv2d_tranpose and mul ops.)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "quant_axis", "The axis for quantization.", 0));
1058 1059 1060 1061 1062 1063 1064
REGISTER_OP_VERSION(moving_average_abs_max_scale)
    .AddCheckpoint(
        R"ROC(Incompatible upgrade of output [Out])ROC",
        paddle::framework::compatible::OpVersionDesc().DeleteOutput(
            "Out",
            "Delete output in order to make the inference model not "
            "save moving_average_abs_max_scale operator. This will "
1065
            "make the quantitative model be correctly applied in inference."))
1066 1067 1068 1069
    .AddCheckpoint(R"ROC(Incompatible upgrade of output [Out])ROC",
                   paddle::framework::compatible::OpVersionDesc().NewOutput(
                       "Out",
                       "In order to support dygraph qat, add output again."));