distribute_transpiler.py 74.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
42 43
    default_startup_program, Block, \
    Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
53 54 55 56 57 58 59 60 61
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
62 63


T
typhoonzero 已提交
64 65 66 67 68 69
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
70

T
typhoonzero 已提交
71 72
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
73 74


75 76 77 78
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
79
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
80
    """
81 82 83 84 85 86
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
87
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
88 89 90

    Args:
        var_list (list): List of variables.
91 92
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
93 94
        min_block_size (int): Minimum splitted block size.
    Returns:
95
        blocks (list[(varname, block_id, current_block_size)]): A list
96
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
97 98 99
    """
    blocks = []
    for var in var_list:
100
        split_count = slice_count
T
typhoonzero 已提交
101 102 103 104
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
105
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
106 107 108 109 110 111 112 113 114
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
115
        # update split_count after aligning
T
typhoonzero 已提交
116
        split_count = int(math.ceil(var_numel / float(block_size)))
117
        for block_id in range(split_count):
T
typhoonzero 已提交
118 119 120 121 122 123 124
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
125 126 127 128 129 130 131
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
132
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
133 134 135 136 137 138
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
139 140
    # supported modes: pserver, nccl2
    mode = "pserver"
141
    print_log = False
G
gongweibao 已提交
142 143


Y
gen rst  
yi.wu 已提交
144
class DistributeTranspiler(object):
Y
yi.wu 已提交
145 146 147 148
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
149
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
150

W
Wu Yi 已提交
151 152 153 154 155 156 157 158 159
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
160 161 162 163

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
164 165 166 167 168 169
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
170 171
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
172
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
173 174 175 176 177 178 179 180
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
181

W
Wu Yi 已提交
182 183 184 185 186 187 188 189 190 191 192
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
193
    """
Y
Yancey1989 已提交
194

G
gongweibao 已提交
195 196 197 198 199 200 201 202 203
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

204 205 206
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
207 208 209
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

237 238 239 240 241
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
242
                  sync_mode=True,
W
Wu Yi 已提交
243 244
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
245
        """
Y
yi.wu 已提交
246 247 248 249 250 251 252 253 254
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
255 256 257
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
258
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
259 260
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
261 262 263
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
264 265 266
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
267 268
        if startup_program is None:
            startup_program = default_startup_program()
269
        self.origin_program = program
W
Wu Yi 已提交
270 271
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
272

W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

282 283 284 285 286 287 288
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
289
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
290
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
291
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
292
        self.grad_name_to_param_name = dict()
293 294
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
295
            self.grad_name_to_param_name[grad_var.name] = param_var.name
296

T
tangwei12 已提交
297 298 299 300 301 302
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

303
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
304
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
305
        self._init_splited_vars()
306

G
gongweibao 已提交
307
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
308
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
309
        send_vars = []
310 311 312 313 314 315

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
316
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
317

G
gongweibao 已提交
318
        if not self.config.slice_var_up:
319 320
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
321

322
        self.grad_name_to_send_dummy_out = dict()
323
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
324
            eplist = ps_dispatcher.dispatch(splited_vars)
325

G
gongweibao 已提交
326
            if not self.config.slice_var_up:
327 328
                assert (len(splited_vars) == 1)

329
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
330
            if len(splited_vars) == 1:
331
                splited_grad_varname = splited_vars[0].name
332 333
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
334
            elif len(splited_vars) > 1:
335
                orig_var = program.global_block().vars[splited_grad_varname]
336 337
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
338
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
339
                index += 1
Y
Yancey1989 已提交
340 341
            else:
                AssertionError("Can not insert the send op by original "
342
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
343

W
Wu Yi 已提交
344 345
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
346
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
347

W
Wu Yi 已提交
348 349 350 351
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
352
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
353
                index=index + 1,
354
                type="send",
Y
update  
Yancey1989 已提交
355
                inputs={"X": splited_vars},
356
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
357 358
                attrs={
                    "epmap": eplist,
359
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
360 361 362 363
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
364
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
365
                })
Y
update  
Yancey1989 已提交
366 367
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
368 369

        if self.sync_mode:
W
Wu Yi 已提交
370 371
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
372 373 374 375
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
376
            input_deps = list(self.grad_name_to_send_dummy_out.values())
377

Y
Yancey1989 已提交
378 379
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
380
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
381
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
382 383
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
384
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
385
                })
Y
Yancey1989 已提交
386

G
gongweibao 已提交
387
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
388
        recv_vars = []
Y
update  
Yancey1989 已提交
389
        for _, var in enumerate(send_vars):
390
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
391
        ps_dispatcher.reset()
Y
Yancey1989 已提交
392 393
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
394
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
395 396
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
397

Y
Yancey1989 已提交
398
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
399
        all_recv_outputs = []
400
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
401 402 403 404
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
405 406 407 408
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
409
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
410 411
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
412 413 414 415 416 417 418 419 420
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
421 422
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
423
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
424 425 426
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
427
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
428 429
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
430
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
431
                })
T
typhoonzero 已提交
432

Q
qiaolongfei 已提交
433
        if self.sync_mode:
W
Wu Yi 已提交
434
            # form a WAW dependency
Q
qiaolongfei 已提交
435 436 437
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
438
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
439 440 441 442
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
443

444
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
445 446
            if len(splited_var) <= 1:
                continue
447
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
448
            program.global_block().append_op(
T
typhoonzero 已提交
449
                type="concat",
T
typhoonzero 已提交
450
                inputs={"X": splited_var},
T
typhoonzero 已提交
451
                outputs={"Out": [orig_param]},
452 453 454 455
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
456

G
gongweibao 已提交
457 458
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

459
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
460 461
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
462
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
463

W
Wu Yi 已提交
464
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
465 466 467 468 469 470
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
471
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
472
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
473
        lr_ops = self._get_lr_ops()
474
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
475 476
        delete_ops(self.origin_program.global_block(), lr_ops)

477
        self.origin_program.__str__()
G
gongweibao 已提交
478

W
Wu Yi 已提交
479 480 481
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

482
        return self.origin_program
T
typhoonzero 已提交
483

W
Wu Yi 已提交
484
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
485 486 487 488
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
489
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
490
            eplist (list): A list of strings indicating
G
gongweibao 已提交
491 492 493 494

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
495
        startup_program = self.startup_program
G
gongweibao 已提交
496 497 498 499

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
500
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
521
                inputs={"X": []},
G
gongweibao 已提交
522 523 524 525 526 527
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
528 529
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
530 531 532
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
533
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
534 535 536 537 538
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
539
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
540
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
541 542
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
543
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
544
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
545 546 547 548 549 550 551 552 553 554
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
555 556 557 558 559 560 561 562
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
563 564
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
565
        Get parameter server side program.
566

Y
yi.wu 已提交
567 568
        Args:
            endpoint (str): current parameter server endpoint.
569

Y
yi.wu 已提交
570 571
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
572
        """
Y
yi.wu 已提交
573 574 575 576
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
577 578 579
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
580 581
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
582
        pserver_program.random_seed = self.origin_program.random_seed
583
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
584 585 586 587 588 589 590 591
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
592 593 594 595 596
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
597 598 599 600 601 602 603 604 605
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
606
            if self.sync_mode and self.trainer_num > 1:
607
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
608 609 610 611 612 613 614 615 616
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
617

Q
qiaolongfei 已提交
618
        # step 3
619
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
620 621 622
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
623
        # step 3.2
T
typhoonzero 已提交
624 625 626 627
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
628 629
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
630
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
631
        # step 3.3
T
typhoonzero 已提交
632
        # Iterate through the ops, and if an op and the optimize ops
633
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
634
        # append it into the sub program.
T
typhoonzero 已提交
635 636 637

        global_ops = []

Y
wip  
yi.wu 已提交
638 639
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
640
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
641
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
642
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
643
            elif op not in lr_ops:
Q
Qiyang Min 已提交
644
                self._append_pserver_non_opt_ops(block, op)
645 646 647 648 649 650

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
651

Y
Yancey1989 已提交
652
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
653 654 655 656 657 658 659 660
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
661
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
662 663 664

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
665
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
666 667

            # clone ops
Y
Yancey1989 已提交
668 669
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
670
                # clone sub_block of op
Y
Yancey1989 已提交
671
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
672 673

            # reset the block of op
W
Wu Yi 已提交
674
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
675

676
        # append lr decay ops to the child block if exists
677
        lr_ops = self._get_lr_ops()
678 679
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
680
        if len(lr_ops) > 0:
W
Wu Yi 已提交
681
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
682
                pserver_program.num_blocks - 1)
683
            optimize_blocks.append(lr_decay_block)
684
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
685
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
686
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
687 688
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
689

T
typhoonzero 已提交
690
        # append op to the current block
Q
qiaolongfei 已提交
691
        grad_to_block_id = []
Q
qiaolongfei 已提交
692
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
693
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
694
            per_opt_block = pserver_program._create_block(pre_block_idx)
695
            optimize_blocks.append(per_opt_block)
696
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
697
            # append grad merging ops before clip and weight decay
698 699
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
700
            for _, op in enumerate(self.optimize_ops):
701 702 703 704 705
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
706 707 708
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
709 710 711 712 713 714 715 716 717 718 719 720
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
                        op not in global_ops:
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
721

W
Wu Yi 已提交
722 723
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
724
        # append global ops
725
        if global_ops:
W
Wu Yi 已提交
726
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
727
                pserver_program.num_blocks - 1)
728
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
729
            for glb_op in global_ops:
X
Xi Chen 已提交
730
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
731
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
732

733
        # process distributed lookup_table
Q
qiaolongfei 已提交
734
        prefetch_var_name_to_block_id = []
735 736
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
737
            table_opt_block = self._create_table_optimize_block(
738
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
739
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
740
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
741
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
742 743
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
744

T
tangwei12 已提交
745
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
746 747
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
748

749
        attrs = {
750
            "optimize_blocks": optimize_blocks,
751 752 753
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
754
            "grad_to_block_id": grad_to_block_id,
755
        }
T
tangwei12 已提交
756 757

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
758
            attrs['checkpint_block_id'] = checkpoint_block_id
759

T
tangwei12 已提交
760 761 762 763
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
764 765 766 767 768
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
769
            attrs=attrs)
770

T
tangwei12 已提交
771
        # add distributed attrs
T
tangwei12 已提交
772
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
773
            endpoint)
774

W
Wu Yi 已提交
775
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
776 777
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
778 779
        return pserver_program

W
Wu Yi 已提交
780 781 782 783 784 785
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
786

W
Wu Yi 已提交
787 788 789 790
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
791 792
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
793 794
        return pserver_prog, pserver_startup

795 796
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
797
                            pserver_program=None,
798
                            startup_program=None):
T
typhoonzero 已提交
799
        """
W
Wu Yi 已提交
800 801
        **Deprecated**

T
typhoonzero 已提交
802 803 804
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
805 806 807

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
808 809
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
810
                when initalizing
811

Y
yi.wu 已提交
812 813
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
814
        """
815 816 817
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
818
        if pserver_program != None:
819 820 821
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
822
        if startup_program != None:
823 824 825
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
826

T
typhoonzero 已提交
827
        s_prog = Program()
W
Wu Yi 已提交
828
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
829
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
830 831 832 833 834 835 836 837 838 839 840
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
841
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
842
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
843
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
844 845 846 847
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
848
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
849 850
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
851 852 853 854 855 856 857 858 859 860
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
861 862

            if op_on_pserver:
863 864 865
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
866 867 868
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
869
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
870 871 872 873
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
874
                    attrs=op.all_attrs())
875 876

        # add slice vars
T
tangwei12 已提交
877
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
878

T
typhoonzero 已提交
879 880
        return s_prog

T
tangwei12 已提交
881 882 883
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
884
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
885
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
886
            if not block_name:
887 888
                continue

T
tangwei12 已提交
889
            block_idx = int(block_name.split(block_suffix)[1])
890 891 892 893 894 895
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
896
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
897

T
tangwei12 已提交
898
        return slice_vars_and_attrs
899

900 901
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
902 903 904 905 906 907 908 909 910
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
911
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
963
    def _init_splited_vars(self):
Y
yi.wu 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
987
        if self.config.slice_var_up:
Y
yi.wu 已提交
988 989
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
990 991 992
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
993
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
994 995
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
996 997 998
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
999 1000 1001 1002
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1003 1004
        assert (len(grad_blocks) == len(param_blocks))

1005
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1006 1007
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1008
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1009 1010 1011 1012
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1013
        # dict(grad_splited_var -> param_splited_var)
1014
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1015 1016 1017
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1018
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1019
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1020 1021

        # create mapping of endpoint -> split var to create pserver side program
1022
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1032
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1033 1034
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1035
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
1045 1046 1047 1048 1049 1050 1051 1052 1053

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

1054
                    lookup_table_op_index = list(all_ops).index(op)
1055 1056 1057
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1058
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
1059
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1060 1061 1062 1063 1064 1065
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
1066
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1067 1068 1069 1070
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
1071 1072

                    # insert split_ids_op
W
Wu Yi 已提交
1073
                    program.global_block()._insert_op(
1074
                        index=lookup_table_op_index,
1075 1076 1077 1078 1079 1080 1081
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
1082
                        outputs={"Out": prefetch_input_vars})
1083 1084

                    # insert prefetch_op
W
Wu Yi 已提交
1085
                    program.global_block()._insert_op(
1086
                        index=lookup_table_op_index + 1,
1087
                        type="prefetch",
Q
qiaolongfei 已提交
1088 1089
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
1090
                        attrs={
1091
                            "epmap": pserver_endpoints,
1092 1093 1094
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1095
                        })
1096 1097

                    # insert concat_op
W
Wu Yi 已提交
1098
                    program.global_block()._insert_op(
1099 1100 1101 1102 1103 1104 1105
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1106
                            'X': prefetch_output_vars
1107
                        },
1108 1109 1110 1111 1112
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1113
                        })
1114 1115

                    # delete lookup_table_op
1116
                    delete_ops(program.global_block(), [op])
1117 1118 1119
                    # break for loop
                    break

Y
Yancey1989 已提交
1120
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1121
        # 2. add split_ids_op and send_op to send gradient to pservers
1122

1123 1124
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1125
        table_grad_name = grad_var_name(self.table_name)
1126 1127 1128 1129
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1130
                program.global_block()._insert_op(
1131 1132 1133 1134 1135
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1136 1137
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1138
                program.global_block()._insert_op(
1139
                    index=op_index + 2,
1140
                    type="send",
1141
                    inputs={'X': self.trainer_side_table_grad_list},
1142 1143 1144 1145 1146
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1147
                    attrs={
1148
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1149
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1150 1151 1152 1153 1154
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1155
                    })
1156 1157 1158 1159 1160 1161
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1162 1163
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
W
Wu Yi 已提交
1164
            prefetch_block = pserver_program._create_block(optimize_block.idx)
Q
qiaolongfei 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1190 1191

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1192
                                     pre_block_idx, grad_to_block_id):
1193
        # STEP: create table optimize block
1194
        table_opt_block = pserver_program._create_block(pre_block_idx)
1195
        # create table param and grad var in pserver program
1196 1197 1198 1199 1200 1201 1202
        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
        ][0]

Y
Yancey1989 已提交
1203 1204
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1205

T
tangwei12 已提交
1206
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1207 1208
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1209 1210 1211
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1212 1213
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1214
            shape=table_shape,
Y
Yancey1989 已提交
1215 1216 1217
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1218

1219 1220
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1221
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1222
            self.origin_program.global_block().vars[grad_var_name(
1223
                self.table_name)])
1224

1225 1226 1227
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1228

1229 1230 1231
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1232
            pserver_side_table_grad_list = [
1233 1234 1235 1236 1237 1238 1239 1240 1241
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1242
            # append sum op for pserver_side_table_grad_list
1243 1244
            table_opt_block.append_op(
                type="sum",
1245
                inputs={"X": pserver_side_table_grad_list},
1246 1247
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1248 1249
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1250
            origin_grad_name = grad_var.name
1251 1252
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1253 1254
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1255
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1256
            grad_var = pserver_program.global_block()._rename_var(
1257
                origin_grad_name, splited_grad_name)
1258 1259 1260 1261 1262 1263 1264

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1265
        # only support sgd now
1266 1267 1268 1269
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1270
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1271

1272 1273 1274
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1275 1276
        return table_opt_block

T
tangwei12 已提交
1277 1278 1279 1280 1281 1282
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1283
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1284
            name="kLookupTablePath",
T
tangwei12 已提交
1285 1286
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1287

W
Wu Yi 已提交
1288
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1289
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1290 1291 1292 1293
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1294
            attrs={'file_path': "none"})
T
tangwei12 已提交
1295 1296 1297

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1298 1299 1300 1301 1302
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1303
        Create vars for each split.
T
typhoonzero 已提交
1304 1305
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1306 1307 1308 1309
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1310
        Returns:
1311
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1312
                from original var name to each var split.
T
typhoonzero 已提交
1313
        """
1314 1315

        # varname->[(block_id, current_block_size)]
1316
        block_map = collections.OrderedDict()
1317

1318
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1319 1320
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1321
            if varname not in block_map:
T
typhoonzero 已提交
1322
                block_map[varname] = []
1323
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1324

M
minqiyang 已提交
1325
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1326
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1327
            if len(splited) == 1:
1328
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1329
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1330
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1331
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1332 1333 1334 1335 1336
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1337
                continue
T
typhoonzero 已提交
1338
            var_mapping[varname] = []
T
typhoonzero 已提交
1339 1340 1341 1342
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1343

T
typhoonzero 已提交
1344
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1345
                size = block[1]
M
minqiyang 已提交
1346
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1347 1348 1349
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1350
                new_var_name = ""
1351
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1352
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1353
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1354 1355
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1356
                                   (varname, i)
T
typhoonzero 已提交
1357
                var = program.global_block().create_var(
T
typhoonzero 已提交
1358 1359
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1360
                    dtype=orig_var.dtype,
1361
                    type=orig_var.type,
T
typhoonzero 已提交
1362
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1363
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1364
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1365
        return var_mapping
T
done  
typhoonzero 已提交
1366

W
Wu Yi 已提交
1367
    def _create_splited_vars(self, source_var, block, tag):
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1378 1379 1380 1381 1382 1383
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1384
            persistable=persistable)
T
done  
typhoonzero 已提交
1385

Y
Yancey1989 已提交
1386
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1387 1388 1389 1390
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1391
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1392 1393 1394 1395
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1396 1397 1398 1399
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1400 1401 1402 1403
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1404
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1405 1406 1407 1408
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1409 1410 1411 1412
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1413 1414 1415
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1416

T
typhoonzero 已提交
1417 1418 1419 1420
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1421
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1437 1438
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1439
                return param_shape
1440 1441 1442
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
T
typhoonzero 已提交
1443 1444 1445 1446
        elif op_type == "sgd":
            pass
        return orig_shape

1447 1448
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1449
        orig_var_name = ""
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1460
        else:
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1483
            return None
1484 1485 1486 1487
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1488
        else:
1489
            merged_var_name = orig_varname
1490 1491

        merged_var = pserver_block.vars[merged_var_name]
1492 1493 1494
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1495
            for i in range(self.trainer_num):
1496
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1497
                                   (merged_var_name, i)
1498 1499 1500 1501
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1502 1503
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1504 1505 1506 1507 1508
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1509
        return merged_var
T
typhoonzero 已提交
1510

1511
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1512
                            grad_to_block_id, origin_program, merged_var):
1513
        program = optimize_block.program
T
typhoonzero 已提交
1514
        pserver_block = program.global_block()
1515
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1526
        for key in opt_op.input_names:
T
typhoonzero 已提交
1527 1528 1529
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1530
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1531 1532
                if not param_block:
                    return
T
typhoonzero 已提交
1533
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1534
                    name=param_block.name,
T
typhoonzero 已提交
1535
                    persistable=True,
T
typhoonzero 已提交
1536 1537 1538
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1539
            elif key == "LearningRate":
1540
                # learning rate variable has already be created by non-optimize op,
1541
                # don't create it once again.
1542
                lr_varname = opt_op.input(key)[0]
1543
                if lr_varname in pserver_block.vars:
1544 1545 1546 1547 1548 1549 1550 1551 1552
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1553

T
typhoonzero 已提交
1554
        for key in opt_op.input_names:
1555
            new_shape = None
W
Wu Yi 已提交
1556
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1557
                continue
1558
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1559 1560 1561 1562
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1563
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1564 1565 1566 1567 1568
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1569

1570
        # change output's ParamOut variable
1571 1572
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1573
        outputs["ParamOut"] = new_inputs["Param"]
1574
        optimize_block.append_op(
T
typhoonzero 已提交
1575 1576
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1577
            outputs=outputs,
G
gongweibao 已提交
1578
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1579

1580 1581
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1582
        for _, g in six.iteritems(var_dict):
1583 1584 1585 1586 1587 1588
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1589 1590 1591
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1592
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1593 1594 1595 1596
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1597
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1598 1599 1600

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1601
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1602 1603 1604 1605
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1606
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1607

Y
Yancey1989 已提交
1608
        return block.append_op(
G
gongweibao 已提交
1609
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1610 1611

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1612
        program = optimize_block.program
1613
        # Append the ops for parameters that do not need to be optimized/updated
1614 1615
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1616
        for key, varlist in six.iteritems(inputs):
1617 1618
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1619
            for var in varlist:
1620 1621 1622 1623 1624 1625
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1626
                elif var.name not in program.global_block().vars:
1627
                    program.global_block().create_var(
T
typhoonzero 已提交
1628 1629 1630 1631 1632
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1633 1634
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1635
        for key, varlist in six.iteritems(outputs):
1636 1637 1638
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1639 1640 1641 1642
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1643
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1644
                    program.global_block()._clone_variable(var)
1645

Y
Yancey1989 已提交
1646
        return optimize_block.append_op(
T
typhoonzero 已提交
1647
            type=opt_op.type,
T
typhoonzero 已提交
1648 1649
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1650
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1651

1652 1653 1654 1655
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1656
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1657
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1658 1659 1660 1661 1662 1663
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1664 1665
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1666 1667 1668 1669 1670 1671
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1672
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1673
        if "Param" in op.input_names and \
T
tangwei12 已提交
1674
                "LearningRate" in op.input_names:
1675 1676 1677 1678 1679 1680 1681
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1682
        if op.input("Param")[0] in param_names:
1683 1684 1685
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1686
                param = op.input("Param")[0]
T
typhoonzero 已提交
1687
                if same_or_split_var(n, param) and n != param:
1688 1689 1690
                    return True
            return False

T
typhoonzero 已提交
1691
    def _get_input_map_from_op(self, varmap, op):
1692
        """Returns a dict from op input name to the vars in varmap."""
1693
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1705
        """Returns a dict from op output name to the vars in varmap."""
1706
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1716 1717

    def _get_lr_ops(self):
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
            if int(op.attr(RPC_OP_ROLE_ATTR_NAME)) == int(
                    LR_SCHED_OP_ROLE_ATTR_VALUE):
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1728 1729 1730 1731
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1732
            if self._is_optimizer_op(op):
1733 1734 1735 1736
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1737
        block = self.origin_program.global_block()
1738 1739 1740 1741 1742
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1743

1744 1745 1746 1747 1748
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1749
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1750 1751 1752 1753 1754 1755
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1756 1757
                    # we only need to append op for once
                    break
1758
        return lr_ops
Y
Yancey1989 已提交
1759

W
Wu Yi 已提交
1760 1761 1762 1763 1764
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1765 1766
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1767 1768 1769
            return True
        return False

Y
Yancey1989 已提交
1770
    def _get_optimize_pass(self):
1771
        """
1772
        Get optimizer operators, parameters and gradients from origin_program
1773 1774 1775 1776
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1777 1778 1779
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1780 1781
        # tmp set to dedup
        optimize_params = set()
1782
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1783
        for op in block.ops:
W
Wu Yi 已提交
1784
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1785
                opt_ops.append(op)
1786 1787 1788 1789 1790 1791
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1792 1793
                        params_grads.append([
                            origin_var_dict[param_name],
1794
                            origin_var_dict[grad_name]
1795
                        ])
Y
Yancey1989 已提交
1796 1797 1798
            else:
                pass
        return opt_ops, params_grads