operator.h 21.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
33
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
34 35 36
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
C
chentianyu03 已提交
41
#include "paddle/utils/flat_hash_map.h"
Q
Qiao Longfei 已提交
42

43
#include "paddle/pten/include/core.h"
44

W
wanghuancoder 已提交
45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

Q
Qiao Longfei 已提交
54 55
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
56 57 58
namespace paddle {
namespace framework {

59
/// If a variable is a empty variable, that name will be used.
60
constexpr char kEmptyVarName[] = "@EMPTY@";
61 62 63

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
64
constexpr char kTempVarName[] = "@TEMP@";
65 66

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
67 68
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
69
constexpr char kGradVarSuffix[] = "@GRAD";
70

M
minqiyang 已提交
71 72
constexpr size_t kGradVarSuffixSize = 5U;

73
/// Variables with this suffix are supposed to be filled up with zeros.
74
constexpr char kZeroVarSuffix[] = "@ZERO";
75

C
chengduo 已提交
76 77 78
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
79 80 81 82 83 84 85 86
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
87 88 89 90 91 92 93 94 95
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
96
// define some kernel priority
97
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
98 99
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

100
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
101 102 103 104 105
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
106 107
}

M
minqiyang 已提交
108
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
109
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
110 111 112 113 114
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
115 116
}

117 118 119 120
inline bool VarIsTensor(const Variable& var) {
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
}

C
chengduo 已提交
121 122
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
123

124
class ExecutionContext;
W
wanghuancoder 已提交
125
class OperatorBase;
126

X
Xin Pan 已提交
127 128
class RuntimeContext {
 public:
X
Xin Pan 已提交
129 130
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
131

X
Xin Pan 已提交
132 133 134 135
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
136 137 138 139
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
140
/**
X
Xin Pan 已提交
141
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
142 143 144 145 146 147
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
148 149
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
150

Q
Qiao Longfei 已提交
151 152
  virtual ~OperatorBase() {}

153
  /// Executor will call this interface function to Run an op.
154 155
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
156

T
typhoonzero 已提交
157 158 159
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

160
  /// if scope is not null, also show dimensions of arguments
161
  virtual std::string DebugStringEx(const ScopeBase* scope) const;
162
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
163

164
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
165
  virtual bool SupportNPU() const { return false; }
166

167 168
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
169
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
170 171
  template <typename T>
  inline const T& Attr(const std::string& name) const {
172 173 174
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
175
    return BOOST_GET_CONST(T, attrs_.at(name));
176
  }
177 178 179 180 181 182 183 184
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
185
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
186

Y
Yu Yang 已提交
187 188
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
189

S
sneaxiy 已提交
190
  const OpInfo& Info() const {
191 192 193
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
194 195 196
    return *info_;
  }

197
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
198
  //! Get a input with argument's name described in `op_proto`
199
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
200
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
201
  const std::vector<std::string>& Inputs(const std::string& name) const;
202
  //! Get all inputs variable names
Q
qijun 已提交
203 204
  std::vector<std::string> InputVars() const;

205
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
206
  //! Get a output with argument's name described in `op_proto`
207
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
208 209
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
210
  const std::vector<std::string>& Outputs(const std::string& name) const;
211
  //! Get all outputs variable names
Y
Yu Yang 已提交
212
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
213

214
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
215

B
baojun-nervana 已提交
216
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
217 218
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
219

Z
Zhang Ting 已提交
220 221 222 223 224
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
225
 protected:
Q
Qiao Longfei 已提交
226
  std::string type_;
D
dongzhihong 已提交
227
  // NOTE: in case of OpGrad, inputs_ contains:
228
  // I (Inputs)
D
dongzhihong 已提交
229 230
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
231
  VariableNameMap inputs_;
Y
Yu Yang 已提交
232

D
dongzhihong 已提交
233 234
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
235
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
236
  AttributeMap attrs_;
S
sneaxiy 已提交
237 238 239 240

  // OpInfo
  const OpInfo* info_;

241 242
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
243 244 245 246

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
247 248
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
249 250
};

251
class ExecutionContext {
Y
Yan Chunwei 已提交
252
 public:
253
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
254
                   const platform::DeviceContext& device_context,
255 256
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
257
  virtual ~ExecutionContext() {}
258

H
hong 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
279 280 281

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
282
  template <typename T>
Y
Yu Yang 已提交
283
  inline const T& Attr(const std::string& name) const {
284
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
285 286
  }

H
hong 已提交
287 288 289
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
290

H
hong 已提交
291
  virtual bool HasInput(const std::string& name) const;
292

H
hong 已提交
293
  virtual bool HasOutput(const std::string& name) const;
294

H
hong 已提交
295
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
296
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
297 298
  }

H
hong 已提交
299
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
300
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
301 302
  }

H
hong 已提交
303
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
304

H
hong 已提交
305
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
306

H
hong 已提交
307
  virtual const std::vector<Variable*> MultiInputVar(
308
      const std::string& name) const {
309 310
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
311 312 313 314
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
315
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
316 317
  }

H
hong 已提交
318
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
319 320 321 322 323 324 325
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
326 327 328 329 330 331 332 333 334 335 336
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

337 338
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
339
    auto* var = InputVar(name);
340
    return var == nullptr ? nullptr : &var->Get<T>();
341 342 343 344
  }

  template <typename T>
  T* Output(const std::string& name) const {
345
    auto var = OutputVar(name);
346
    return var == nullptr ? nullptr : var->GetMutable<T>();
347 348 349 350
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
351 352
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
353 354
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
355 356 357 358 359
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
360
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
361 362 363 364 365 366 367
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
368 369 370
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
371 372
      return {};
    }
H
hong 已提交
373

X
Xin Pan 已提交
374 375 376 377 378 379
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
380

X
Xin Pan 已提交
381 382 383
    return res;
  }

384
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
385

Q
QI JUN 已提交
386 387 388 389 390
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

391
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
392
    return device_context_;
Q
qijun 已提交
393
  }
Q
qijun 已提交
394

395
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
396
  const inline platform::CUDADeviceContext& cuda_device_context() const {
397 398 399
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
400 401 402 403 404
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
405 406 407
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
408
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
409 410 411 412 413
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

414 415 416 417 418 419
    PADDLE_ENFORCE_GE(
        allocation_ptr->size(), framework::product(dim) * sizeof(T),
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
            allocation_ptr->size(), framework::product(dim) * sizeof(T)));
X
Xin Pan 已提交
420 421 422 423 424 425 426 427

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
428 429 430
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
431
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
432

433
 private:
434 435
  const OperatorBase& op_;
  const Scope& scope_;
436
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
437
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
438 439
};

440 441 442 443 444 445 446 447 448 449 450 451 452 453
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
454
class OpKernelBase {
Q
qijun 已提交
455
 public:
Q
qijun 已提交
456
  /**
457
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
458 459
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
460
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
461 462
   */

463
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
464

Y
Yu Yang 已提交
465 466 467 468 469 470 471
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
472 473
};

Y
Yu Yang 已提交
474 475
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
476
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
477
  using OpKernelMap =
Y
yuyang18 已提交
478
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
479

Y
Yu Yang 已提交
480 481
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
482 483
      : OperatorBase(type, inputs, outputs, attrs) {}

C
chentianyu03 已提交
484
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
485
  AllOpKernels() {
C
chentianyu03 已提交
486
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
487
    return g_all_op_kernels;
Y
Yu Yang 已提交
488
  }
Y
Yan Chunwei 已提交
489

490 491 492 493 494
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

495
  bool SupportGPU() const override {
Y
Yu Yang 已提交
496 497 498 499 500
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
501
  }
B
Baibaifan 已提交
502 503 504 505 506 507 508
  bool SupportNPU() const override {
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_npu_place(kern_pair.first.place_);
                       });
  }
509
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
510

511 512
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
513

514
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
515

X
Xin Pan 已提交
516 517
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
518

519 520 521
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

522 523 524 525
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
      const ExecutionContext& ctx, const std::string& name1,
      const std::string& name2) const;

526
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
527

528 529
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
530 531 532
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
533

534 535
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
536 537 538
    return kernel_type_->place_;
  }

539 540 541 542 543 544 545 546 547 548 549
  /* member functions for adapting to pten lib */
  /** In the Tensor calculation library, the new Kernel adopts a clearer and
    * more streamlined design. The arguments of the Kernel and the input and
    * output arguments registered in the original OpMaker do not match in some
    * cases, so we use map to record the arguments required by the kernel.
    * When selecting Kernel during Op execution, select the arguments of the
    * original Op according to the GetExpectedPtenKernelArgs returned arguments.
    */
  virtual KernelSignature GetExpectedPtenKernelArgs(
      const ExecutionContext& ctx) const;

Y
Yu Yang 已提交
550
 private:
551
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
552 553
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
554 555

  /**
T
tianshuo78520a 已提交
556 557
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
558 559 560 561
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
562 563 564 565
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
566 567 568 569

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
570

571 572 573
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

  void ChooseKernel(const ExecutionContext& ctx) const;
L
Liu Yiqun 已提交
574

575 576 577
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

578 579 580 581 582
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
583 584 585
  void ParseInputDataType(const std::vector<Variable*>& vars,
                          const std::string& name,
                          proto::VarType::Type* data_type) const;
586 587 588 589
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

590 591 592
  /* member functions for adapting to pten lib */
  void ChoosePtenKernel(const ExecutionContext& ctx) const;

593 594
  void BuildPtenKernelContext(const RuntimeContext& ctx,
                              platform::DeviceContext* dev_ctx) const;
595

596 597
  void WriteBackToOutputs(RuntimeContext* ctx) const;

598
 protected:
L
Liu Yiqun 已提交
599 600
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
601 602
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
603
  mutable bool need_prepare_data_ = true;
604 605
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
606
  mutable std::mutex cache_update_mutex_;
607
  mutable bool enable_cache_transfer_scope_ = false;
608 609 610 611 612 613
  // NOTE(chenweihang): Similar op members are used to adapt to
  // new pten kernel, if there is a better design in the future,
  // we may polish the implementation here
  mutable bool run_pten_kernel_ = false;
  mutable std::unique_ptr<KernelSignature> pt_kernel_signature_;
  mutable std::unique_ptr<pten::Kernel> pt_kernel_;
614 615 616
  // In order to reduce the compatibility phase
  // performance overhead, temporarily cache KernelContext
  mutable std::unique_ptr<pten::KernelContext> pt_kernel_context_;
Q
Qiao Longfei 已提交
617 618
};

Y
Yu Yang 已提交
619 620
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
621 622
}  // namespace framework
}  // namespace paddle