operator.h 19.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
36
#include "paddle/fluid/framework/unused_var_check.h"
37
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
38 39
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
40

W
wanghuancoder 已提交
41 42 43 44 45 46 47 48 49
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

Q
Qiao Longfei 已提交
50 51
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
52 53 54
namespace paddle {
namespace framework {

55
/// If a variable is a empty variable, that name will be used.
56
constexpr char kEmptyVarName[] = "@EMPTY@";
57 58 59

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
60
constexpr char kTempVarName[] = "@TEMP@";
61 62

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
63 64
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
65
constexpr char kGradVarSuffix[] = "@GRAD";
66

M
minqiyang 已提交
67 68
constexpr size_t kGradVarSuffixSize = 5U;

69
/// Variables with this suffix are supposed to be filled up with zeros.
70
constexpr char kZeroVarSuffix[] = "@ZERO";
71

C
chengduo 已提交
72 73 74
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
75 76 77 78 79 80 81 82
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
83 84 85 86 87 88 89 90 91
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
92
// define some kernel priority
93
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
94 95
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

96
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
97 98 99 100 101
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
102 103
}

M
minqiyang 已提交
104
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
105
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
106 107 108 109 110
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
111 112
}

C
chengduo 已提交
113 114
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
115

116
class ExecutionContext;
W
wanghuancoder 已提交
117
class OperatorBase;
118

X
Xin Pan 已提交
119 120
class RuntimeContext {
 public:
X
Xin Pan 已提交
121 122
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
123

X
Xin Pan 已提交
124 125 126 127
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
128 129 130 131
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
132
/**
X
Xin Pan 已提交
133
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
134 135 136 137 138 139
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
140 141
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
142

Q
Qiao Longfei 已提交
143 144
  virtual ~OperatorBase() {}

145
  /// Executor will call this interface function to Run an op.
146 147
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
148

T
typhoonzero 已提交
149 150 151
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

152 153 154
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
155

156 157
  virtual bool SupportGPU() const { return false; }

158 159
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
160
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
161 162
  template <typename T>
  inline const T& Attr(const std::string& name) const {
163 164 165
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
166
    return BOOST_GET_CONST(T, attrs_.at(name));
167
  }
168 169 170 171 172 173 174 175
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
176
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
177

Y
Yu Yang 已提交
178 179
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
180

S
sneaxiy 已提交
181
  const OpInfo& Info() const {
182 183 184
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
185 186 187
    return *info_;
  }

188
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
189
  //! Get a input with argument's name described in `op_proto`
190
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
191
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
192
  const std::vector<std::string>& Inputs(const std::string& name) const;
193
  //! Get all inputs variable names
Q
qijun 已提交
194 195
  std::vector<std::string> InputVars() const;

196
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
197
  //! Get a output with argument's name described in `op_proto`
198
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
199 200
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
201
  const std::vector<std::string>& Outputs(const std::string& name) const;
202
  //! Get all outputs variable names
Y
Yu Yang 已提交
203
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
204

205
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
206

B
baojun-nervana 已提交
207
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
208 209
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
210

Z
Zhang Ting 已提交
211 212 213 214 215
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
216
 protected:
Q
Qiao Longfei 已提交
217
  std::string type_;
D
dongzhihong 已提交
218
  // NOTE: in case of OpGrad, inputs_ contains:
219
  // I (Inputs)
D
dongzhihong 已提交
220 221
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
222
  VariableNameMap inputs_;
Y
Yu Yang 已提交
223

D
dongzhihong 已提交
224 225
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
226
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
227
  AttributeMap attrs_;
S
sneaxiy 已提交
228 229 230 231

  // OpInfo
  const OpInfo* info_;

232 233
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
234 235 236 237

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
238 239
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
240 241
};

242
class ExecutionContext {
Y
Yan Chunwei 已提交
243
 public:
244
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
245
                   const platform::DeviceContext& device_context,
246 247
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
248
  virtual ~ExecutionContext() {}
249

H
hong 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
270 271 272

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
273
  template <typename T>
Y
Yu Yang 已提交
274
  inline const T& Attr(const std::string& name) const {
275
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
276 277
  }

H
hong 已提交
278 279 280
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
281

H
hong 已提交
282
  virtual bool HasInput(const std::string& name) const;
283

H
hong 已提交
284
  virtual bool HasOutput(const std::string& name) const;
285

H
hong 已提交
286
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
287
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
288 289
  }

H
hong 已提交
290
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
291
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
292 293
  }

H
hong 已提交
294
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
295

H
hong 已提交
296
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
297

H
hong 已提交
298
  virtual const std::vector<Variable*> MultiInputVar(
299
      const std::string& name) const {
300 301
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
302 303 304 305
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
306
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
307 308
  }

H
hong 已提交
309
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
310 311 312 313 314 315 316
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
317 318 319 320 321 322 323 324 325 326 327
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

328 329
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
330
    auto* var = InputVar(name);
331
    return var == nullptr ? nullptr : &var->Get<T>();
332 333 334 335
  }

  template <typename T>
  T* Output(const std::string& name) const {
336
    auto var = OutputVar(name);
337
    return var == nullptr ? nullptr : var->GetMutable<T>();
338 339 340 341
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
342 343
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
344 345
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
346 347 348 349 350
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
351
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
352 353 354 355 356 357 358
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
359 360 361
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
362 363
      return {};
    }
H
hong 已提交
364

X
Xin Pan 已提交
365 366 367 368 369 370
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
371

X
Xin Pan 已提交
372 373 374
    return res;
  }

375
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
376

Q
QI JUN 已提交
377 378 379 380 381
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

382
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
383
    return device_context_;
Q
qijun 已提交
384
  }
Q
qijun 已提交
385

386
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
387
  const inline platform::CUDADeviceContext& cuda_device_context() const {
388 389 390
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
391 392 393 394 395
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
396 397 398
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
399
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
400 401 402 403 404
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

405 406 407 408 409 410
    PADDLE_ENFORCE_GE(
        allocation_ptr->size(), framework::product(dim) * sizeof(T),
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
            allocation_ptr->size(), framework::product(dim) * sizeof(T)));
X
Xin Pan 已提交
411 412 413 414 415 416 417 418

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
419 420 421
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
422
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
423

424
 private:
425 426
  const OperatorBase& op_;
  const Scope& scope_;
427
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
428
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
429 430
};

431 432 433 434 435 436 437 438 439 440 441 442 443 444
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
445
class OpKernelBase {
Q
qijun 已提交
446
 public:
Q
qijun 已提交
447
  /**
448
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
449 450
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
451
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
452 453
   */

454
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
455

Y
Yu Yang 已提交
456 457 458 459 460 461 462
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
463 464
};

Y
Yu Yang 已提交
465 466
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
467
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
468
  using OpKernelMap =
Y
yuyang18 已提交
469
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
470

Y
Yu Yang 已提交
471 472
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
473 474
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
475 476 477 478
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
479
  }
Y
Yan Chunwei 已提交
480

481 482 483 484 485
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

486
  bool SupportGPU() const override {
Y
Yu Yang 已提交
487 488 489 490 491
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
492
  }
493
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
494

495 496
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
497

498
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
499

X
Xin Pan 已提交
500 501
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
502

503 504 505
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

506 507 508 509
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
      const ExecutionContext& ctx, const std::string& name1,
      const std::string& name2) const;

510
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
511

512 513
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
514 515 516
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
517

518 519
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
520 521 522
    return kernel_type_->place_;
  }

Y
Yu Yang 已提交
523
 private:
524
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
525 526
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
527 528

  /**
T
tianshuo78520a 已提交
529 530
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
531 532 533 534
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
535 536 537 538
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
539 540 541 542

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
543

L
Liu Yiqun 已提交
544 545 546
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

547 548 549
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

550 551 552 553 554 555 556 557 558 559 560
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

561
 protected:
L
Liu Yiqun 已提交
562 563
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
564 565
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
566
  mutable bool need_prepare_data_ = true;
567 568
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
569
  mutable std::mutex cache_update_mutex_;
570
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
571 572
};

Y
Yu Yang 已提交
573 574
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
575 576
}  // namespace framework
}  // namespace paddle