sharding_optimizer.py 50.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import unique_name, core
import paddle.fluid as fluid

from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
J
update  
JZ-LIANG 已提交
19
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op, OpRole
20 21 22 23 24 25 26
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
J
update  
JZ-LIANG 已提交
27

28
import logging
29 30 31 32 33 34
from functools import reduce

__all__ = ["ShardingOptimizer"]


class ShardingOptimizer(MetaOptimizerBase):
S
sandyhouse 已提交
35 36
    """Sharding Optimizer."""

37 38 39 40 41 42
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
43 44
            "LarsOptimizer",
            "LambOptimizer",
S
update  
sandyhouse 已提交
45
            # "ModelParallelOptimizer",
S
sandyhouse 已提交
46
            "PipelineOptimizer",
47 48 49 50 51 52 53 54 55 56 57 58
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()

S
update  
sandyhouse 已提交
59 60 61 62
        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self._as_outer_parallelism = False
        self._inner_parallelism_size = None

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
        dist_strategy.sharding_configs = {"fuse_broadcast_MB": 32}

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
S
sandyhouse 已提交
83
        """Implementation of minimize."""
84 85 86 87
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1
88 89
        self._fuse_broadcast_MB = self.user_defined_strategy.sharding_configs[
            "fuse_broadcast_MB"]
90 91
        self.hybrid_dp = self.user_defined_strategy.sharding_configs[
            "hybrid_dp"]
S
update  
sandyhouse 已提交
92 93 94
        self._as_outer_parallelism = self.user_defined_strategy.sharding_configs[
            "as_outer_parallelism"]
        self._inner_parallelism_size = int(
S
sandyhouse 已提交
95
            self.user_defined_strategy.sharding_configs["parallelism"])
S
update  
sandyhouse 已提交
96 97
        self.use_pipeline = self.user_defined_strategy.sharding_configs[
            "use_pipeline"]
S
sandyhouse 已提交
98 99
        self.acc_steps = self.user_defined_strategy.sharding_configs[
            "acc_steps"]
S
update  
sandyhouse 已提交
100 101
        self.schedule_mode = self.user_defined_strategy.sharding_configs[
            "schedule_mode"]
S
sandyhouse 已提交
102
        self.pp_bz = self.user_defined_strategy.sharding_configs["pp_bz"]
103 104 105 106

        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
S
update  
sandyhouse 已提交
107
        if self.use_pipeline:
S
sandyhouse 已提交
108 109
            pp_optimizer = fluid.optimizer.PipelineOptimizer(self.inner_opt,
                                                             self.acc_steps)
S
update  
sandyhouse 已提交
110 111
            main_program = loss.block.program
            main_program._pipeline_opt = dict()
S
update  
sandyhouse 已提交
112
            main_program._pipeline_opt['schedule_mode'] = self.schedule_mode
S
sandyhouse 已提交
113
            main_program._pipeline_opt['pp_bz'] = self.pp_bz
S
sandyhouse 已提交
114 115 116
            pp_rank = self.role_maker._worker_index() // (
                self.user_defined_strategy.sharding_configs[
                    'sharding_group_size'] * self._inner_parallelism_size)
S
update  
sandyhouse 已提交
117 118 119 120
            main_program._pipeline_opt['local_rank'] = pp_rank
            main_program._pipeline_opt[
                'global_rank'] = self.role_maker._worker_index()
            main_program._pipeline_opt['use_sharding'] = True
S
update  
sandyhouse 已提交
121 122
            main_program._pipeline_opt['ring_id'] = 20
            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
S
update  
sandyhouse 已提交
123 124 125 126 127
                loss, startup_program, parameter_list, no_grad_set)
            self.pipeline_nodes = len(program_list)
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
128 129 130

        if startup_program is None:
            startup_program = default_startup_program()
S
update  
sandyhouse 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        if self.use_pipeline:
            startup_program = startup_program._pipeline_opt['startup_program']
            #main_program = main_program._pipeline_opt['section_program']['program']
            print("pp_rank:", pp_rank)
            main_program = program_list[pp_rank]['program']
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads

        else:
            main_block = loss.block
147 148 149 150
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

S
update  
sandyhouse 已提交
151 152 153
        if self.use_pipeline:
            pp_optimizer._rename_gradient_var_name(main_block)

154 155 156 157 158 159 160 161 162 163 164 165
        # step1: set_up
        self._set_up(params_grads)

        # step2: split_program
        self._split_program(main_block)

        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

        # step4: insert reduce_sum for grad
S
update  
sandyhouse 已提交
166 167 168 169 170 171 172
        # grad_scale_coeff = self.role_maker._worker_num()
        # if self._as_outer_parallelism:
        #     grad_scale_coeff = grad_scale_coeff / self._inner_parallelism_size
        # insert_scale_loss_grad_ops(main_block, scale=1.0 / grad_scale_coeff)
        sharding_group_size = self.user_defined_strategy.sharding_configs[
            'sharding_group_size']
        insert_scale_loss_grad_ops(main_block, scale=1.0 / sharding_group_size)
173 174 175 176 177
        main_block._sync_with_cpp()

        # step5: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)
S
update  
sandyhouse 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        if self.hybrid_dp:
            self._initialization_broadcast(startup_program)

        if self.use_pipeline:
            # crop ops
            for idx, op in reversed(list(enumerate(main_block.ops))):
                # if op.type == 'fill_constant' and int(op.attr('op_role')) == 16:
                #     out_name = op.output_arg_names[0]
                #     if not 'GRAD' in out_name: continue
                #     param_name = out_name.strip("@GRAD")
                #     #if main_block.has_var(out_name): continue
                #     if self._shard.has_param(param_name): continue
                #     main_block._remove_op(idx)
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
                        main_block._remove_op(idx)

S
sandyhouse 已提交
197 198 199 200 201 202 203 204 205 206 207
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)
            #param_list = []
            #for param_name, grad_name in params_grads:
            #    if self._shard.has_param(param_name):
            #        param_list.append(param_name)
S
update  
sandyhouse 已提交
208
            #pp_optimizer._clear_gradients(main_block, param_list) 
R
update  
root 已提交
209 210 211 212 213
            accumulated_grad_names = pp_optimizer._accumulate_gradients(
                main_block)
            accumulated_grad_names = sorted(accumulated_grad_names)
            print(accumulated_grad_names)
            first_optimize_op_index = get_first_check_finite_and_unscale_op_idx(
J
update  
JZ-LIANG 已提交
214 215 216 217 218
                main_block)
            insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
R
update  
root 已提交
219
                accumulated_grad_names,
J
update  
JZ-LIANG 已提交
220 221 222
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True)
S
update  
sandyhouse 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
            #if not self._shard.has_param(param_name): continue
            ##if not main_block.has_var(grad_name): continue
            #assert main_block.has_var(grad_name)
            #grad_var = main_block.vars[grad_name]
            #grad_var.persistable = True
            #main_block._insert_op(
            #    index=0,
            #    type='fill_constant',
            #    inputs={},
            #    outputs={'Out': [grad_var]},
            #    attrs={
            #        'shape': grad_var.shape,
            #        'dtype': grad_var.dtype,
            #        'value': float(0),
            #        #self._op_device_key: device,
            #        # a trick to run this op once per mini-batch
            #        'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
            #    })

        #def _create_var(block, ref_var, name):
        #    """
        #    Create a new var for block, which has the same type,
        #    shape and dtype as ref_var, then rename it with the
        #    name `name`.
        #    """
        #    new_var = block.create_var(
        #        name=name,
        #        shape=ref_var.shape,
        #        dtype=ref_var.dtype,
        #        type=ref_var.type,
        #        lod_level=ref_var.lod_level,
        #        persistable=ref_var.persistable,
        #        is_data=ref_var.is_data,
        #        need_check_feed=ref_var.desc.need_check_feed())
        #    new_var.stop_gradient = ref_var.stop_gradient
        #    return new_var

        #def _rename_arg(op, old_name, new_name):
        #    op_desc = op.desc
        #    if isinstance(op_desc, tuple):
        #        op_desc = op_desc[0]
        #    op_desc._rename_input(old_name, new_name)
        #    op_desc._rename_output(old_name, new_name)

        #print("params_grads:", params_grads)
        #for param_name, grad_name in params_grads:
        #    if not self._shard.has_param(param_name): continue
        #    #if not main_block.has_var(grad_name): continue
        #    assert main_block.has_var(grad_name)
        #    use_fp16 = False
        #    fp16_grad_name = param_name + '.cast_fp16@GRAD'
        #    if main_block.has_var(grad_name):
        #        fp16_grad_var = main_block.vars[fp16_grad_name]
        #        use_fp16 = True
        #    grad_var = main_block.vars[grad_name]
        #    if use_fp16:
        #        cast_grad_var_name = paddle.fluid.unique_name.generate(
        #            grad_name)
        #        cast_var = _create_var(main_block, fp16_grad_var,
        #                               cast_grad_var_name)
        #        cast_var.persistable = False
        #        main_block.append_op(
        #            #index=offset + 1,
        #            type='cast',
        #            inputs={'X': grad_var},
        #            outputs={'Out': cast_var},
        #            attrs={
        #                'in_dtype': grad_var.dtype,
        #                'out_dtype': cast_var.dtype,
        #                'op_role':
        #                core.op_proto_and_checker_maker.OpRole.Backward,
        #            })
        #        #offset += 1
        #        main_block.append_op(
        #            #index=offset + 1,
        #            type='sum',
        #            inputs={'X': [fp16_grad_var, cast_var]},
        #            outputs={'Out': fp16_grad_var},
        #            attrs={
        #                'op_role':
        #                core.op_proto_and_checker_maker.OpRole.Backward,
        #                'op_role_var': op_role_var
        #            })

        # for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
        #     offset = index
        #     if is_backward_op(op) and (
        #             'op_role_var' in op.attr_names):
        #         op_role_var = op.all_attrs()['op_role_var']

        #         if len(op_role_var) == 0:
        #             continue
        #         assert len(op_role_var) % 2 == 0
        #         offset = index
        #         for i in range(0, len(op_role_var), 2):
        #             grad_name = op_role_var[i + 1]
        #             if not main_block.has_var(grad_name): continue
        #             grad_var = main_block.vars[grad_name]
        #             if not 'cast_fp16' in grad_name:
        #                 new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
        #                 new_var = _create_var(main_block, grad_var,
        #                                            new_grad_var_name)
        #                 new_var.persistable = False
        #                 _rename_arg(op, grad_name, new_grad_var_name)
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='sum',
        #                     inputs={'X': [grad_var, new_var]},
        #                     outputs={'Out': grad_var},
        #                     attrs={
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         'op_role_var': op_role_var
        #                     })
        #                 offset += 1
        #             if 'cast_fp16' in grad_name:
        #                 param_name = op_role_var[i]
        #                 fp32_grad_var_name = param_name + "@GRAD"
        #                 fp32_grad_var = main_block.vars[grad_name]
        #                 cast_grad_var_name = paddle.fluid.unique_name.generate(
        #                     fp32_grad_var_name)
        #                 cast_var = _create_var(main_block, grad_var,
        #                                             cast_grad_var_name)
        #                 cast_var.persistable = False
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='cast',
        #                     inputs={'X': fp32_grad_var},
        #                     outputs={'Out': cast_var},
        #                     attrs={
        #                         'in_dtype': fp32_grad_var.dtype,
        #                         'out_dtype': cast_var.dtype,
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         # self._op_role_var_key: op_role_var
        #                     })
        #                 offset += 1
        #                 main_block._insert_op(
        #                     index=offset + 1,
        #                     type='sum',
        #                     inputs={'X': [grad_var, cast_var]},
        #                     outputs={'Out': grad_var},
        #                     attrs={
        #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
        #                         'op_role_var': op_role_var})
        main_block._sync_with_cpp()

        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))
374 375 376

        # check op dependecy
        check_broadcast(main_block)
S
sandyhouse 已提交
377 378
        #check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                    self.dp_ring_id)
S
update  
sandyhouse 已提交
379
        #check_allreduce_sum(main_block, self._shard, self.dp_ring_id)
380 381 382 383 384
        self._wait()
        return optimize_ops, params_grads

    def _set_up(self, params_grads):
        # step 1: initialize nccl
385 386 387 388
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.global_rank]
389
        self._collective_helper = CollectiveHelper(self.role_maker,
390 391 392
                                                   self._nrings_sharding)
        # config sharding & dp groups
        self._init_comm()
S
update  
sandyhouse 已提交
393

S
sandyhouse 已提交
394
        # global
S
update  
sandyhouse 已提交
395
        if self._as_outer_parallelism:
J
update  
JZ-LIANG 已提交
396 397 398
            print("global_group_endpoints:", self.global_group_endpoints)
            print("global_rank:", self.global_rank)
            print("global_ring_id:", self.global_group_id)
S
update  
sandyhouse 已提交
399 400 401
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.global_group_endpoints, self.global_rank,
J
update  
JZ-LIANG 已提交
402
                self.global_group_id, False)
S
update  
sandyhouse 已提交
403 404

        if self._as_outer_parallelism:
J
update  
JZ-LIANG 已提交
405 406 407
            print("mp_group_endpoints:", self.mp_group_endpoints)
            print("mp_rank:", self.mp_rank)
            print("mp_ring_id:", self.mp_group_id)
S
update  
sandyhouse 已提交
408 409 410 411
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.mp_group_endpoints, self.mp_rank, self.mp_group_id, False)

412
        # sharding
S
sandyhouse 已提交
413 414 415
        print("sharding_group_endpoints:", self.sharding_group_endpoints)
        print("sharding_rank:", self.sharding_rank)
        print("sharding_ring_id:", self.sharding_ring_id)
416 417 418
        self._collective_helper._init_communicator(
            self._startup_program, self.current_endpoint,
            self.sharding_group_endpoints, self.sharding_rank,
S
update  
sandyhouse 已提交
419
            self.sharding_ring_id, False)
S
update  
sandyhouse 已提交
420

421 422
        # dp
        if self.hybrid_dp:
423
            self._collective_helper._init_communicator(
424
                self._startup_program, self.current_endpoint,
J
update  
JZ-LIANG 已提交
425
                self.dp_group_endpoints, self.dp_rank, self.dp_ring_id, False)
S
update  
sandyhouse 已提交
426 427
        # pp
        if self.use_pipeline:
S
sandyhouse 已提交
428 429 430
            print("pp_group_endpoints:", self.pp_group_endpoints)
            print("pp_rank:", self.pp_rank)
            print("pp_ring_id:", self.pp_ring_id)
S
update  
sandyhouse 已提交
431
            if self.schedule_mode == 0:  # GPipe
S
sandyhouse 已提交
432 433
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
S
update  
sandyhouse 已提交
434 435 436 437 438 439 440 441
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id,
                    False)
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id + 2,
                    False)
            else:
                for pair in self.pipeline_pair:
S
update  
sandyhouse 已提交
442 443 444
                    pair_key = pair[0] * 1000 + pair[1]
                    ring_id = self.pp_ring_map[pair_key]
                    print("pp pair:{}, ring_id: {}".format(pair, ring_id))
S
update  
sandyhouse 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457
                    if self.pp_rank not in pair: continue
                    pp_group_endpoints = [
                        self.pp_group_endpoints[pair[0]],
                        self.pp_group_endpoints[pair[1]],
                    ]
                    if pair[0] < pair[1]:
                        start_ring_id = self.pp_ring_id + pair[1] - pair[0] - 1
                    else:
                        start_ring_id = self.pp_ring_id + 2 + pair[0] - pair[
                            1] - 1
                    pp_rank = 0 if self.pp_rank == pair[0] else 1
                    self._collective_helper._init_communicator(
                        self._startup_program, self.current_endpoint,
S
update  
sandyhouse 已提交
458
                        pp_group_endpoints, pp_rank, ring_id, False, False)
459

460 461 462 463 464
        startup_block = self._startup_program.global_block()
        startup_block._sync_with_cpp()

        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
465 466
        self._shard.setup(params_grads, self.sharding_rank,
                          self.sharding_group_size)
467 468 469 470 471 472

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
R
update  
root 已提交
473
        endpoints = self.role_maker._get_trainer_endpoints()
474
        current_endpoint = endpoints[self.role_maker._worker_index()]
R
update  
root 已提交
475
        if self.role_maker._worker_index() == 0:
476 477
            self._collective_helper._wait(current_endpoint, endpoints)

R
update  
root 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    # def _wait(self, ):
    #     # only the first parallelsm group that init nccl need to be wait. 
    #     if self._as_outer_parallelism:
    #         endpoints = self.role_maker._get_trainer_endpoints()
    #     else:
    #         endpoints = self.sharding_group_endpoints[:]
    #     current_endpoint = endpoints[self.role_maker._worker_index()]

    #     if self._as_outer_parallelism:
    #         if self.role_maker._worker_index() == 0:
    #             self._collective_helper._wait(current_endpoint, endpoints)
    #     else:
    #         if self.sharding_rank == 0:
    #             self._collective_helper._wait(current_endpoint, endpoints)

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
            if segment._param_mem >= self._fuse_broadcast_MB:
                segment._start_idx = op_idx + 1
                self._segments.insert(0, segment)
                segment = ProgramSegment(block)
                segment._end_idx = op_idx + 1

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
J
update  
JZ-LIANG 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544
            if not self.use_pipeline:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
                            param, reduced_grad = op_role_var[i], op_role_var[
                                i + 1]
                            segment._allreduce_vars.append(reduced_grad)
                            #assert (
                            #    reduced_grad not in self._reduced_grads_to_param)
                            self._reduced_grads_to_param[reduced_grad] = param
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
562 563 564 565 566 567

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
568 569 570
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
S
update  
sandyhouse 已提交
571 572 573 574
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        Model_Paramllelism_ring_id = self.sharding_ring_id
        if self._as_outer_parallelism:
S
update  
sandyhouse 已提交
575
            Model_Paramllelism_ring_id = self.global_group_id
576
        FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param,
S
update  
sandyhouse 已提交
577 578
                             Model_Paramllelism_ring_id)
        gradientclip_helper = GradientClipHelper(Model_Paramllelism_ring_id)
579 580 581 582 583 584 585 586 587 588 589 590
        gradientclip_helper.prune_gradient_clip(block, self._shard)

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

591
        # prune optimizer state and param
592 593 594 595 596 597 598 599 600 601 602 603 604 605
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
S
update  
sandyhouse 已提交
606 607 608 609 610 611 612
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
644 645
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
646 647 648 649
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

        block._sync_with_cpp()
S
update  
sandyhouse 已提交
650 651 652 653 654 655 656 657
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
        block._sync_with_cpp()
658 659 660 661 662
        return

    def _add_broadcast_allreduce(self, block):
        """
        _add_broadcast_allreduce
J
update  
JZ-LIANG 已提交
663 664 665

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
666 667 668
        """
        if len(self._segments) < 1:
            return
669
        # sharding
J
update  
JZ-LIANG 已提交
670 671 672 673
        if self.use_pipeline:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

674
        if self._segments[-1]._allreduce_vars:
675 676 677 678 679 680 681
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
                insert_allreduce_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
682
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
683
                                 self.sharding_ring_id,
684 685
                                 self._segments[-1]._allreduce_vars)
            insert_allreduce_ops(block, self._segments[-1]._end_idx,
686
                                 self.sharding_ring_id,
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
                                 self._segments[-1]._allreduce_vars)

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, segment._end_idx, self.dp_ring_id,
                                     shard_allredue_vars)

                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)
            else:
                comm_dep_vars = allreduce_vars + [x[0] for x in broadcast_vars]
                if len(comm_dep_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, comm_dep_vars)

740 741 742 743 744 745 746 747 748 749 750 751 752
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
S
sandyhouse 已提交
753
            print("cast_ops:", cast_ops)
754 755 756
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
757 758
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
759
            # step6: add all_reduce ops
760 761 762 763 764 765 766 767 768
            # dp
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_allreduce_ops(block, segment._start_idx, self.dp_ring_id,
                                     shard_allredue_vars)
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
            insert_allreduce_ops(block, segment._start_idx,
                                 self.sharding_ring_id, allreduce_vars)
769 770 771 772

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
773 774 775
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
776
            insert_broadcast_ops(block, self._segments[0]._start_idx,
777
                                 self.sharding_ring_id,
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
818 819 820

    def _init_comm(self):

J
update  
JZ-LIANG 已提交
821
        # sharding alone mode
R
update  
root 已提交
822 823 824 825
        # self.sharding_ring_id = 0
        # self.sharding_rank = self.global_rank
        # self.sharding_group_endpoints = self.endpoints[:]
        # self.sharding_group_size = len(self.endpoints)
J
update  
JZ-LIANG 已提交
826

827
        if self.hybrid_dp:
S
update  
sandyhouse 已提交
828
            assert self._as_outer_parallelism == False, "hybrid dp is conflict when using sharding as outer parallelism"
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
            self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                "sharding_group_size"]
            self.sharding_ring_id = 0
            self.sharding_rank = self.global_rank % self.sharding_group_size

            self.dp_group_size = self.global_word_size // self.sharding_group_size
            self.dp_rank = self.global_rank // self.sharding_group_size
            self.dp_ring_id = self.sharding_rank + 1

            self.sharding_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx // self.sharding_group_size) == self.dp_rank
            ]
            self.dp_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx % self.sharding_group_size) == self.sharding_rank
            ]
R
update  
root 已提交
846
            # self.global_group_endpoints = self.role_maker._get_trainer_endpoints()[:]
J
update  
JZ-LIANG 已提交
847

848 849 850 851 852 853 854 855 856
            assert self.global_word_size > self.sharding_group_size, \
                "global_word_size: {} should be larger than sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.global_word_size % self.sharding_group_size == 0, \
                "global_word_size: {} should be divisible to the sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.dp_group_size *  self.sharding_group_size == self.global_word_size, \
                "global_word_size: {} should be equal to the product of sharding_group_size: {} and dp_group_size: {}".format(
                self.global_word_size,
                self.sharding_group_size,
                self.dp_group_size)
S
update  
sandyhouse 已提交
857 858 859 860 861 862 863 864 865 866
            self.pp_ring_id = -1
            self.pp_rank = -1
            self.pp_group_size = None
            self.pp_group_endpoints = None

            # sharding parallelism is the only model parallelism in the current setting
            self.mp_group_id = self.sharding_ring_id
            self.mp_rank = self.sharding_rank
            self.mp_group_size = self.sharding_group_size
            self.mp_group_endpoints = self.sharding_group_endpoints[:]
867 868 869

            logging.info("Using Sharing&DP mode !")
        else:
S
sandyhouse 已提交
870
            if self._as_outer_parallelism and not self.use_pipeline:
S
update  
sandyhouse 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
                self.sharding_ring_id = 1
                assert self.global_word_size > self._inner_parallelism_size, \
                    "global_word_size: {} should be larger than inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                assert self.global_word_size % self._inner_parallelism_size == 0, \
                    "global_word_size: {} should be divisible to the inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                self.sharding_rank = self.global_rank // self._inner_parallelism_size
                self.sharding_group_size = self.role_maker._worker_num(
                ) // self._inner_parallelism_size
                _offset = self.global_rank % self._inner_parallelism_size
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.endpoints)
                    if idx % self._inner_parallelism_size == _offset
                ]

                # the current entire model parallelism group is the combination of innert & sharding parallelism
                self.mp_group_id = 2
                self.mp_rank = self.global_rank
                self.mp_group_size = self.role_maker._worker_num()
                self.mp_group_endpoints = self.endpoints[:]
                logging.info("Using Sharing as Outer parallelism mode !")

                # print(
                #     "init the nccl comm for megatron paramllelism, this should be done in Megatron Metaoptimizer"
                # )
                # partition_idx = self.global_rank // self._inner_parallelism_size
                # magetron_endpoints = self.endpoints[
                #     partition_idx * self._inner_parallelism_size:partition_idx *
                #     self._inner_parallelism_size + self._inner_parallelism_size]
                # magetron_rank = self.global_rank % self._inner_parallelism_size

                # self._collective_helper._init_communicator(
                #     program=self._startup_program,
                #     current_endpoint=self.current_endpoint,
                #     endpoints=magetron_endpoints,
                #     rank=magetron_rank,
                #     ring_id=0,
                #     wait_port=True)
                # logging.info("megatron group size: {}".format(
                #     self._inner_parallelism_size))
                # logging.info("megatron rank: {}".format(magetron_rank))
                # logging.info("megatron endpoints: {}".format(
                #     magetron_endpoints))
            if self.use_pipeline:
S
sandyhouse 已提交
914 915 916 917 918 919 920
                if self._inner_parallelism_size == 1:
                    self.sharding_ring_id = 0
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
                    self.sharding_rank = self.global_rank % self.sharding_group_size
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
S
update  
sandyhouse 已提交
921
                    self.pp_ring_id = 20
S
sandyhouse 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
                    self.pp_rank = self.global_rank // (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.sharding_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx // self.sharding_group_size) == self.pp_rank
                    ]
                    self.pp_group_size = self.pipeline_nodes
                    self.pp_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx % self.sharding_group_size
                            ) == self.sharding_rank
                    ]
                else:
S
update  
sandyhouse 已提交
935
                    self.mp_group_id = 0
S
sandyhouse 已提交
936
                    self.sharding_ring_id = 1
S
update  
sandyhouse 已提交
937
                    self.pp_ring_id = 20
S
update  
sandyhouse 已提交
938 939 940 941 942 943 944 945
                    self.mp_rank = self.global_rank % self._inner_parallelism_size
                    self.mp_group = self.global_rank // self._inner_parallelism_size
                    self.mp_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if idx // self._inner_parallelism_size == self.mp_group
                    ]
                    print("megatron_group_endpoints:", self.mp_group_endpoints)
                    print("megatron_rank:", self.mp_rank)
S
sandyhouse 已提交
946 947 948
                    # self.cards_per_node = 8
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
S
update  
sandyhouse 已提交
949 950 951 952 953 954
                    self.sharding_rank = (
                        self.global_rank //
                        self._inner_parallelism_size) % self.sharding_group_size
                    self.sharding_group_id = self.global_rank // (
                        self._inner_parallelism_size * self.sharding_group_size)
                    self.megatron_rank = self.global_rank % self._inner_parallelism_size
S
sandyhouse 已提交
955 956
                    self.sharding_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
S
update  
sandyhouse 已提交
957 958 959 960
                        if (idx // (self._inner_parallelism_size *
                                    self.sharding_group_size)
                            ) == self.sharding_group_id and idx %
                        self._inner_parallelism_size == self.megatron_rank
S
sandyhouse 已提交
961
                    ]
S
update  
sandyhouse 已提交
962 963
                    print("sharding_endpoint:", self.sharding_group_endpoints)
                    print("sharding_rank:", self.sharding_rank)
S
sandyhouse 已提交
964 965 966
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
                    self.pp_rank = self.global_rank // (
S
update  
sandyhouse 已提交
967 968
                        self.sharding_group_size *
                        self._inner_parallelism_size) % self.pipeline_nodes
S
sandyhouse 已提交
969
                    offset = self.sharding_group_size * self._inner_parallelism_size
S
update  
sandyhouse 已提交
970
                    # TODO: Adjust for dp
S
sandyhouse 已提交
971 972 973 974 975 976 977
                    idx_with_pp_0 = self.global_rank % (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.pp_group_endpoints = []
                    for i in range(self.pipeline_nodes):
                        self.pp_group_endpoints.append(self.endpoints[
                            idx_with_pp_0])
                        idx_with_pp_0 += offset
S
update  
sandyhouse 已提交
978 979
                    print("pp_group_endpoints:", self.pp_group_endpoints)
                    print("pp_rank:", self.pp_rank)
S
sandyhouse 已提交
980 981 982 983 984

                    #self.pp_group_endpoints = [
                    #    ep for idx, ep in enumerate(self.endpoints)
                    #    if (idx % self.sharding_group_size) == self.sharding_rank
                    #]
S
update  
sandyhouse 已提交
985 986 987 988
                self.global_group_id = 3
                self.global_rank = self.global_rank
                self.global_group_size = self.role_maker._worker_num()
                self.global_group_endpoints = self.endpoints[:]
S
sandyhouse 已提交
989
                logging.info("Using Sharing as Outer parallelism mode !")
S
update  
sandyhouse 已提交
990 991 992 993 994 995
                self.dp_ring_id = -1
                self.dp_rank = -1
                self.dp_group_size = None
                self.dp_group_endpoints = None

                logging.info("Using Sharing with pipeline !")
S
sandyhouse 已提交
996 997 998 999 1000
            #else:
            #    self.sharding_ring_id = 0
            #    self.sharding_rank = self.global_rank
            #    self.sharding_group_size = self.role_maker._worker_num()
            #    self.sharding_group_endpoints = self.endpoints
S
update  
sandyhouse 已提交
1001

S
sandyhouse 已提交
1002 1003 1004 1005 1006
            #    # sharding parallelism is the only model parallelism in the current setting
            #    self.mp_group_id = self.sharding_ring_id
            #    self.mp_rank = self.sharding_rank
            #    self.mp_group_size = self.sharding_group_size
            #    self.mp_group_endpoints = self.sharding_group_endpoints[:]
S
update  
sandyhouse 已提交
1007

S
sandyhouse 已提交
1008
            #    logging.info("Using Sharing alone mode !")
S
update  
sandyhouse 已提交
1009 1010 1011 1012 1013 1014

            self.dp_ring_id = -1
            self.dp_rank = -1
            self.dp_group_size = None
            self.dp_group_endpoints = None

S
sandyhouse 已提交
1015 1016 1017 1018 1019 1020 1021 1022
            #self.pp_ring_id = -1
            #self.pp_rank = -1
            #self.pp_group_size = None
            #self.pp_group_endpoints = None
            #self.dp_ring_id = -1
            #self.dp_rank = -1
            #self.dp_group_size = None
            #self.dp_group_endpoints = None
1023 1024 1025

            logging.info("Using Sharing alone mode !")

S
sandyhouse 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        #logging.info("global word size: {}".format(self.global_word_size))
        #logging.info("global rank: {}".format(self.global_rank))
        #logging.info("sharding group_size: {}".format(self.sharding_group_size))
        #logging.info("sharding rank: {}".format(self.sharding_rank))
        #logging.info("current model parallelism group_size: {}".format(
        #    self.mp_group_size))
        #logging.info("current model parallelism rank: {}".format(self.mp_rank))
        #logging.info("dp group size: {}".format(self.dp_group_size))
        #logging.info("dp rank: {}".format(self.dp_rank))
        #logging.info("current endpoint: {}".format(self.current_endpoint))
        #logging.info("global word endpoints: {}".format(self.endpoints))
        #logging.info("sharding group endpoints: {}".format(
        #    self.sharding_group_endpoints))
        #logging.info("current model parallelism group endpoints: {}".format(
        #    self.mp_group_endpoints))
        #logging.info("dp group endpoints: {}".format(self.dp_group_endpoints))
1042 1043

        return
S
update  
sandyhouse 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

    def _initialization_broadcast(self, startup_prog):
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
        block = startup_prog.global_block()
        params = []
        for param in block.iter_parameters():
            params.append(param)
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})