operator.h 20.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19 20 21 22
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
23
#include "op_info.h"
Y
Yi Wang 已提交
24
#include "paddle/framework/attribute.h"
Q
qiaolongfei 已提交
25
#include "paddle/framework/block_desc.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/data_type.h"
Y
Yu Yang 已提交
27
#include "paddle/framework/framework.pb.h"
28
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
29
#include "paddle/framework/scope.h"
Q
Qiao Longfei 已提交
30
#include "paddle/framework/shape_inference.h"
Q
qijun 已提交
31 32 33
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
34
#include "paddle/platform/variant.h"
Q
qijun 已提交
35
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54 55 56 57 58

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
59
class OperatorBase;
60 61
class InferShapeContext;
class ExecutionContext;
62

Q
Qiao Longfei 已提交
63 64 65
extern const Tensor* GetTensorFromVar(const Variable* var);
extern Tensor* GetTensorFromVar(Variable* var);

Q
Qiao Longfei 已提交
66 67 68 69 70 71 72 73
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
74 75
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
76

Q
Qiao Longfei 已提交
77 78 79
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
80
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
81 82 83 84 85
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

86
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
87 88

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
89
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
90 91
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
92 93
  virtual bool IsNetOp() const { return false; }

94 95
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
96 97 98
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
99 100
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
101

Y
Yu Yang 已提交
102
  //! Get a input with argument's name described in `op_proto`
103
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
104
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
105
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
106

Q
qijun 已提交
107 108
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
109
  //! Get a output with argument's name described in `op_proto`
110
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
111 112
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
113
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
114

Y
Yu Yang 已提交
115
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
116

Q
qiaolongfei 已提交
117
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
118
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
119 120
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
121
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
122 123
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
124

Q
qiaolongfei 已提交
125
 protected:
Q
Qiao Longfei 已提交
126
  std::string type_;
D
dongzhihong 已提交
127
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
128
  // I (Inputs)opear
D
dongzhihong 已提交
129 130
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
131
  VariableNameMap inputs_;
Y
Yu Yang 已提交
132

D
dongzhihong 已提交
133 134
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
135
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
136
  AttributeMap attrs_;
137 138 139 140

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
141 142
};

Y
Yu Yang 已提交
143 144
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
145
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
146
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
147
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
148
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
149
  }
Y
Yu Yang 已提交
150

Y
Yu Yang 已提交
151 152 153 154
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
155 156
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
157 158 159
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
160
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
161

162 163
class NOP : public OperatorBase {
 public:
164
  using OperatorBase::OperatorBase;
165 166
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
167 168 169
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
170 171
};

172
class InferShapeContext {
Y
Yan Chunwei 已提交
173
 public:
174 175
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
176

Q
qiaolongfei 已提交
177 178 179 180
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
181
  template <typename T>
Y
Yu Yang 已提交
182 183
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
184 185
  }

Y
Yu Yang 已提交
186
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
187
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
188 189
  }

Y
Yu Yang 已提交
190
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
191
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
192 193
  }

194
  const Variable* InputVar(const std::string& name) const {
195
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
196
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
197 198
  }

199
  Variable* OutputVar(const std::string& name) const {
200
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
201
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
202 203
  }

204 205
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
206 207
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
208
    res.reserve(names.size());
209 210
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
211 212
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
213
                   });
Y
Yan Chunwei 已提交
214 215 216
    return res;
  }

217
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
218
    auto names = op_.Outputs(name);
219
    std::vector<Variable*> res;
220
    res.reserve(names.size());
221 222
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
223 224
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
225
                   });
Y
Yan Chunwei 已提交
226 227 228
    return res;
  }

229 230
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
231
    auto* var = InputVar(name);
232
    return var == nullptr ? nullptr : &var->Get<T>();
233 234 235 236
  }

  template <typename T>
  T* Output(const std::string& name) const {
237
    auto var = OutputVar(name);
238
    return var == nullptr ? nullptr : var->GetMutable<T>();
239 240 241 242 243 244 245 246
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
247
                   [&](const std::string& sub_name) {
248
                     auto var = scope_.FindVar(sub_name);
249
                     return var == nullptr ? nullptr : &var->Get<T>();
250 251 252 253 254
                   });
    return res;
  }

  template <typename T>
255
  std::vector<T*> MultiOutput(const std::string& name) const {
256
    auto names = op_.Outputs(name);
257
    std::vector<T*> res;
258 259
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
260
                   [&](const std::string& sub_name) {
261
                     auto var = scope_.FindVar(sub_name);
262
                     return var == nullptr ? nullptr : var->GetMutable<T>();
263 264 265 266
                   });
    return res;
  }

267 268 269 270 271 272
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
273
    if (!in_var->IsType<LoDTensor>()) return;
274
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
275
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
276 277 278
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
279 280
  }

Q
qiaolongfei 已提交
281
 private:
282
  const OperatorBase& op_;
283
  const Scope& scope_;
284 285
};

286 287 288 289 290 291 292
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
    const std::string& name) const;

293 294 295 296 297 298 299
template <>
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
    const std::string& name) const;

300
class ExecutionContext : public InferShapeContext {
301
 public:
302
  ExecutionContext(const OperatorBase& op, const Scope& scope,
303
                   const platform::DeviceContext& device_context)
304
      : InferShapeContext(op, scope), device_context_(device_context) {}
305

Q
qijun 已提交
306
  template <typename PlaceType,
307 308
            typename DeviceType = typename platform::EigenDeviceConverter<
                PlaceType>::EigenDeviceType>
309
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
310

311
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
312

313
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
314
    return device_context_;
Q
qijun 已提交
315
  }
Q
qijun 已提交
316

317 318
 private:
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
319 320
};

Q
tmp  
qiaolongfei 已提交
321 322
class CompileTimeInferShapeContext : public InferShapeContextBase {
 public:
Q
qiaolongfei 已提交
323 324
  CompileTimeInferShapeContext(const OpDescBind& op, const BlockDescBind& block)
      : op_(op), block_(block) {}
Q
tmp  
qiaolongfei 已提交
325 326

  bool HasInput(const std::string& name) const {
Q
qiaolongfei 已提交
327 328 329 330
    const std::vector<std::string>& input_names = op_.Input(name);
    PADDLE_ENFORCE_EQ(input_names.size(), 1UL, "Inputs(%s) length is not 1",
                      name);
    return block_.HasVar(input_names[0]);
Q
tmp  
qiaolongfei 已提交
331 332 333
  }

  bool HasOutput(const std::string& name) const {
Q
qiaolongfei 已提交
334 335 336 337
    const std::vector<std::string>& output_names = op_.Output(name);
    PADDLE_ENFORCE_EQ(output_names.size(), 1UL, "Outputs(%s) length is not 1",
                      name);
    return block_.HasVar(output_names[0]);
Q
tmp  
qiaolongfei 已提交
338 339 340
  }

  bool HasInputs(const std::string& name) const {
Q
qiaolongfei 已提交
341 342 343 344
    const std::vector<std::string>& input_names = op_.Input(name);
    PADDLE_ENFORCE_GT(input_names.size(), 0UL, "Inputs(%s) length is 0", name);
    for (auto& input : input_names) {
      if (!block_.HasVar(input)) return false;
Q
tmp  
qiaolongfei 已提交
345 346 347 348 349
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const {
Q
qiaolongfei 已提交
350 351 352
    const std::vector<std::string>& output_names = op_.Output(name);
    PADDLE_ENFORCE_GT(output_names.size(), 0UL, "Inputs(%s) length is 0", name);
    for (auto& output : output_names) {
Q
qiaolongfei 已提交
353
      if (!block_.HasVar(output)) return false;
Q
tmp  
qiaolongfei 已提交
354 355 356 357 358
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const {
Q
qiaolongfei 已提交
359 360 361
    std::vector<DDim> ddims = GetInputsDim(name);
    PADDLE_ENFORCE_EQ(ddims.size(), 1UL, "Inputs(%s) length is not 1", name);
    return ddims[0];
Q
tmp  
qiaolongfei 已提交
362 363 364
  }

  void SetInputDim(const std::string& name, const DDim& dim) {
Q
qiaolongfei 已提交
365
    SetInputsDim(name, {dim});
Q
tmp  
qiaolongfei 已提交
366 367 368
  }

  DDim GetOutputDim(const std::string& name) const {
Q
qiaolongfei 已提交
369 370 371
    std::vector<DDim> ddims = GetOutputsDim(name);
    PADDLE_ENFORCE_EQ(ddims.size(), 1UL, "Outputs(%s) length is not 1", name);
    return ddims[0];
Q
tmp  
qiaolongfei 已提交
372 373 374
  }

  void SetOutputDim(const std::string& name, const DDim& dim) {
Q
qiaolongfei 已提交
375
    SetOutputsDim(name, {dim});
Q
tmp  
qiaolongfei 已提交
376 377
  }

Q
qiaolongfei 已提交
378
  AttrReader Attrs() const { return AttrReader(op_.GetAttrMap()); }
Q
tmp  
qiaolongfei 已提交
379 380

  const std::vector<std::string>& Inputs(const std::string& name) const {
Q
qiaolongfei 已提交
381
    return op_.Input(name);
Q
tmp  
qiaolongfei 已提交
382 383 384
  }

  const std::vector<std::string>& Outputs(const std::string& name) const {
Q
qiaolongfei 已提交
385
    return op_.Output(name);
Q
tmp  
qiaolongfei 已提交
386 387 388 389
  }

 private:
  DDim GetDim(const std::string& name) const {
Q
qiaolongfei 已提交
390
    return framework::make_ddim(block_.Var(name)->Shape());
Q
tmp  
qiaolongfei 已提交
391 392 393
  }

  void SetDim(const std::string& name, const DDim& dim) {
Q
qiaolongfei 已提交
394
    block_.Var(name)->SetShape(framework::vectorize(dim));
Q
tmp  
qiaolongfei 已提交
395 396
  }

Q
qiaolongfei 已提交
397 398
  const OpDescBind& op_;
  const BlockDescBind& block_;
Q
tmp  
qiaolongfei 已提交
399 400
};

Q
Qiao Longfei 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
class RuntimeInferShapeContext : public InferShapeContextBase {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const {
    auto ipt = op_.Input(name);
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const {
    auto ipt = op_.Output(name);
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  bool HasInputs(const std::string& name) const {
    auto inputs = op_.Inputs(name);
    if (inputs.size() == 0UL) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const {
    auto outputs = op_.Outputs(name);
    if (outputs.size() == 0UL) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

Q
Qiao Longfei 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  DDim GetInputDim(const std::string& name) const {
    return GetDim(op_.Input(name));
  }

  void SetInputDim(const std::string& name, const DDim& dim) {
    SetDim(op_.Input(name), dim);
  }

  DDim GetOutputDim(const std::string& name) const {
    return GetDim(op_.Output(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

 private:
  template <bool Allocate>
  Tensor* GetTensor(const std::string& name) const {
    Tensor* t = nullptr;
    auto* var = scope_.FindVar(name);
    if (!var->IsType<LoDTensor>() && !var->IsType<Tensor>()) {
      if (Allocate) {
        t = var->GetMutable<LoDTensor>();
      } else {
        PADDLE_THROW("Variable(%s) should be tensor", name);
      }
    } else {
      t = GetTensorFromVar(scope_.FindVar(name));
    }
    return t;
  }

  DDim GetDim(const std::string& name) const {
    return GetTensor<false>(name)->dims();
  }

  void SetDim(const std::string& name, const DDim& dim) {
    GetTensor<true>(name)->Resize(dim);
  }

  const OperatorBase& op_;
  const Scope& scope_;
};

Y
Yu Yang 已提交
499
class OpKernelBase {
Q
qijun 已提交
500
 public:
Q
qijun 已提交
501
  /**
502
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
503 504
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
505
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
506 507
   */

508
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
509

Y
Yu Yang 已提交
510 511 512 513 514 515 516
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
517 518
};

Q
Qiao Longfei 已提交
519 520
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
521 522
  struct OpKernelKey {
    platform::Place place_;
Y
Yu Yang 已提交
523
    DataType data_type_;
Q
Qiao Longfei 已提交
524

Y
Yu Yang 已提交
525 526 527 528 529
    OpKernelKey(DataType data_type, platform::Place place)
        : place_(place), data_type_(data_type) {}

    OpKernelKey(DataType data_type, const platform::DeviceContext& dev_ctx)
        : place_(dev_ctx.GetPlace()), data_type_(data_type) {}
Y
Yu Yang 已提交
530

Q
qijun 已提交
531
    bool operator==(const OpKernelKey& o) const {
Y
Yu Yang 已提交
532 533
      return platform::places_are_same_class(place_, o.place_) &&
             data_type_ == o.data_type_;
Q
qijun 已提交
534
    }
Y
Yu Yang 已提交
535 536 537
  };

  struct OpKernelHash {
Y
Yu Yang 已提交
538
    std::hash<int> hash_;
Y
Yu Yang 已提交
539
    size_t operator()(const OpKernelKey& key) const {
Y
Yu Yang 已提交
540 541
      int place = key.place_.which();
      int data_type = static_cast<int>(key.data_type_);
Y
Yu Yang 已提交
542 543
      int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT |
                     (place & ((1 << NUM_PLACE_TYPE_LIMIT_IN_BIT) - 1));
Y
Yu Yang 已提交
544
      return hash_(pre_hash);
Y
Yu Yang 已提交
545 546 547 548
    }
  };

  using OpKernelMap =
Y
Yu Yang 已提交
549 550
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernelBase>,
                         OpKernelHash>;
Q
Qiao Longfei 已提交
551

Y
Yu Yang 已提交
552 553
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
554 555
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
556
  void Run(const Scope& scope,
Y
Yu Yang 已提交
557
           const platform::DeviceContext& dev_ctx) const final {
Y
Yu Yang 已提交
558 559 560
    RuntimeInferShapeContext infer_shape_ctx(*this, scope);
    this->InferShape(&infer_shape_ctx);

Y
Yu Yang 已提交
561
    ExecutionContext ctx(*this, scope, dev_ctx);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

    // check if op[type] has kernel registered.
    auto& all_op_kernels = AllOpKernels();
    auto kernels_iter = all_op_kernels.find(type_);
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW("op[%s] has no kernel", type_);
    }

    // check if op[type] have kernel for kernel_key
    OpKernelMap& kernels = kernels_iter->second;
    auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx);
    auto kernel_iter = kernels.find(kernel_key);

    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op[%s] has no kernel with kernel_key[%s]", type_,
                   kernel_key);
    }

    kernel_iter->second->Compute(ctx);
Q
Qiao Longfei 已提交
581 582
  }

Y
Yu Yang 已提交
583 584 585 586
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
587
  }
Y
Yan Chunwei 已提交
588

589
  bool SupportGPU() const override {
Y
Yu Yang 已提交
590 591 592 593 594
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
595 596
  }

Y
Yu Yang 已提交
597
 protected:
Q
Qiao Longfei 已提交
598
  virtual void InferShape(InferShapeContextBase* ctx) const = 0;
Y
Yu Yang 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

  // indicate kernel DataType by input data. Defaultly all input data must be
  // same.
  virtual DataType IndicateDataType(const ExecutionContext& ctx) const {
    auto& scope = ctx.scope();
    int data_type = -1;
    for (auto& input : this->inputs_) {
      for (auto& ipt_name : input.second) {
        auto* var = scope.FindVar(ipt_name);
        if (var != nullptr) {
          const Tensor* t = nullptr;
          if (var->IsType<Tensor>()) {
            t = &var->Get<Tensor>();
          } else if (var->IsType<LoDTensor>()) {
            t = &var->Get<LoDTensor>();
          }
          if (t != nullptr) {
            int tmp = static_cast<int>(ToDataType(t->type()));
            PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                           "DataType of Paddle Op must be same.");
            data_type = tmp;
          }
        }
      }
    }
    PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
    return static_cast<DataType>(data_type);
  }
Q
Qiao Longfei 已提交
627 628
};

629 630 631
std::ostream& operator<<(std::ostream& os,
                         const OperatorWithKernel::OpKernelKey& kernel_key);

Q
Qiao Longfei 已提交
632 633
}  // namespace framework
}  // namespace paddle