operator.h 13.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
22
#include "op_info.h"
Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
25
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
26 27 28 29
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
30
#include "paddle/platform/variant.h"
Q
qijun 已提交
31
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
32 33 34 35

namespace paddle {
namespace framework {

36
/// If a variable is a empty variable, that name will be used.
37
constexpr char kEmptyVarName[] = "@EMPTY@";
38 39 40

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
41
constexpr char kTempVarName[] = "@TEMP@";
42 43 44 45

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
46
constexpr char kGradVarSuffix[] = "@GRAD";
47 48

/// Variables with this suffix are supposed to be filled up with zeros.
49
constexpr char kZeroVarSuffix[] = "@ZERO";
50 51 52 53 54

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
67 68
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
69

Q
Qiao Longfei 已提交
70 71 72
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
73
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
74 75 76 77 78
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

79
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
80 81 82

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
83
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
84 85

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
86
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
87 88
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
89 90
  virtual bool IsNetOp() const { return false; }

91 92
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
93 94 95
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
96 97
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
98

Y
Yu Yang 已提交
99
  //! Get a input with argument's name described in `op_proto`
100
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
101
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
102
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
103

Q
qijun 已提交
104 105
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
106
  //! Get a output with argument's name described in `op_proto`
107
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
108 109
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
110
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
111

Y
Yu Yang 已提交
112
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
113

Q
qiaolongfei 已提交
114
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
115
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
116 117
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
118
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
119 120
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
121

Q
qiaolongfei 已提交
122
 protected:
Q
Qiao Longfei 已提交
123
  std::string type_;
D
dongzhihong 已提交
124
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
125
  // I (Inputs)opear
D
dongzhihong 已提交
126 127
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
128
  VariableNameMap inputs_;
Y
Yu Yang 已提交
129

D
dongzhihong 已提交
130 131
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
132
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
133
  AttributeMap attrs_;
134 135 136 137

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
138 139
};

Y
Yu Yang 已提交
140 141
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
142
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
143
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
144
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
145
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
146
  }
Y
Yu Yang 已提交
147

Y
Yu Yang 已提交
148 149 150 151
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
152 153
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
154 155 156
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
157
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
158

159 160
class NOP : public OperatorBase {
 public:
161
  using OperatorBase::OperatorBase;
162 163 164
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
165 166 167
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
168 169
};

170
class InferShapeContext {
Y
Yan Chunwei 已提交
171
 public:
172 173
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
174

Q
qiaolongfei 已提交
175 176 177 178
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
179
  template <typename T>
Y
Yu Yang 已提交
180 181
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
182 183
  }

Y
Yu Yang 已提交
184
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
185
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
186 187
  }

Y
Yu Yang 已提交
188
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
189
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
190 191
  }

192
  const Variable* InputVar(const std::string& name) const {
193
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
194
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
195 196
  }

197
  Variable* OutputVar(const std::string& name) const {
198
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
199
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
200 201
  }

202 203
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
204 205
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
206
    res.reserve(names.size());
207 208
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
209 210
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
211
                   });
Y
Yan Chunwei 已提交
212 213 214
    return res;
  }

215
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
216
    auto names = op_.Outputs(name);
217
    std::vector<Variable*> res;
218
    res.reserve(names.size());
219 220
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
221 222
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
223
                   });
Y
Yan Chunwei 已提交
224 225 226
    return res;
  }

227 228
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
229
    auto* var = InputVar(name);
230
    return var == nullptr ? nullptr : &var->Get<T>();
231 232 233 234
  }

  template <typename T>
  T* Output(const std::string& name) const {
235
    auto var = OutputVar(name);
236
    return var == nullptr ? nullptr : var->GetMutable<T>();
237 238 239 240 241 242 243 244
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
245
                   [&](const std::string& sub_name) {
246
                     auto var = scope_.FindVar(sub_name);
247
                     return var == nullptr ? nullptr : &var->Get<T>();
248 249 250 251 252
                   });
    return res;
  }

  template <typename T>
253
  std::vector<T*> MultiOutput(const std::string& name) const {
254
    auto names = op_.Outputs(name);
255
    std::vector<T*> res;
256 257
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
258
                   [&](const std::string& sub_name) {
259
                     auto var = scope_.FindVar(sub_name);
260
                     return var == nullptr ? nullptr : var->GetMutable<T>();
261 262 263 264
                   });
    return res;
  }

265
  const Tensor* GetTensorFromVar(const Variable* var) const {
266
    if (var->IsType<LoDTensor>()) {
267
      return &var->Get<LoDTensor>();
268 269 270
    }
    PADDLE_ENFORCE(var->IsType<Tensor>(),
                   "The Input(%s) must be LoDTensor or Tensor.");
271
    return &var->Get<Tensor>();
272 273
  }

274 275 276 277 278 279
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
280
    if (!in_var->IsType<LoDTensor>()) return;
281
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
282
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
283 284 285
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
286 287
  }

Q
qiaolongfei 已提交
288
 private:
289
  const OperatorBase& op_;
290
  const Scope& scope_;
291 292
};

293 294 295 296 297 298 299
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
    const std::string& name) const;

300 301 302 303 304 305 306
template <>
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
    const std::string& name) const;

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

322
class ExecutionContext : public InferShapeContext {
323
 public:
324
  ExecutionContext(const OperatorBase& op, const Scope& scope,
325
                   const platform::DeviceContext& device_context)
326
      : InferShapeContext(op, scope), device_context_(device_context) {}
327

Q
qijun 已提交
328 329 330
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
331
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
332

333
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
334

335
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
336
    return device_context_;
Q
qijun 已提交
337
  }
Q
qijun 已提交
338

339 340
 private:
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
341 342
};

Q
qijun 已提交
343 344
class OpKernel {
 public:
Q
qijun 已提交
345
  /**
346
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
347 348
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
349
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
350 351
   */

352
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
353 354 355 356

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
357 358
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
359 360
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
361

Y
Yu Yang 已提交
362
    OpKernelKey() = default;
L
liaogang 已提交
363
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
364 365 366
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
367 368 369
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
370 371 372 373 374 375 376 377 378 379 380
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
381

Y
Yu Yang 已提交
382 383
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
384 385
      : OperatorBase(type, inputs, outputs, attrs) {}

386
  void InferShape(const Scope& scope) const override {
387
    InferShape(InferShapeContext(*this, scope));
388 389
  }

Y
Yu Yang 已提交
390
  void Run(const Scope& scope,
Y
Yu Yang 已提交
391
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
392
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
393
    opKernel->Compute(ExecutionContext(*this, scope, dev_ctx));
Q
Qiao Longfei 已提交
394 395
  }

Y
Yu Yang 已提交
396 397 398 399
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
400
  }
Y
Yan Chunwei 已提交
401

402 403 404 405 406 407
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
408
 protected:
409
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
410 411 412 413
};

}  // namespace framework
}  // namespace paddle