build_strategy.cc 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29 30
DECLARE_bool(use_mkldnn);

31 32 33 34
namespace paddle {
namespace framework {
namespace details {

35
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
36 37
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
38
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
39
  // don't need to append it here.
Y
Yancey1989 已提交
40
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
41 42
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
43 44
}

C
chengduo 已提交
45 46 47 48 49 50
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

51 52 53 54
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
55
    ResolveOptionConfliction();
C
chengduo 已提交
56

C
chengduo 已提交
57 58 59 60 61 62 63
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
64

65
    AppendAddReaderDependencyPass();
C
chengduo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
79

C
chengduo 已提交
80 81
    SetCollectiveContext();
  }
82

C
chengduo 已提交
83 84 85
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
86
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
87
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
88 89
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
90
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
91 92 93
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
94
    }
C
chengduo 已提交
95
    if (strategy_.is_distribution_) {
C
chengduo 已提交
96
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
97 98 99
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
100
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
101 102 103
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
104
    }
C
chengduo 已提交
105
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
106
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
107 108 109
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
110
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
111 112
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
113
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
114
    }
C
chengduo 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
128 129
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
130 131 132 133
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
134 135
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
136
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
137
    }
C
chengduo 已提交
138
  }
139

C
chengduo 已提交
140 141 142 143 144 145
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
146

C
chengduo 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
162

C
chengduo 已提交
163 164 165
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
166
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
Z
Zhang Ting 已提交
167
    AppendPassWithCheck(strategy_.fuse_bn_add_act_ops_, "fuse_bn_add_act_pass");
168
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
169
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
170 171 172
#else
    LOG(WARNING) << "fusion_group is not enabled for Windows/MacOS now, and "
                    "only effective when running with CUDA GPU.";
173
#endif
C
chengduo 已提交
174 175
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
176
    // for single card training, fuse_all_reduce_ops is unnecessary.
177
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
178 179
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
180
    // Fuse all the optimization operators.
C
chengduo 已提交
181 182 183
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
184
    if (strategy_.fuse_all_optimizer_ops_ == true) {
185 186 187
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
188
    }
C
chengduo 已提交
189
  }
C
chengduo 已提交
190

C
chengduo 已提交
191 192 193 194
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
195 196 197 198 199 200 201
    PADDLE_ENFORCE_GE(
        strategy_.trainer_id_, 0,
        platform::errors::InvalidArgument(
            "The trainer_id_ of strategy_ must be greater than or equal to 0, "
            "but received strategy_.trainer_id_ = %d.",
            strategy_.trainer_id_));

C
chengduo 已提交
202
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
203 204 205 206 207 208 209 210 211 212
      PADDLE_ENFORCE_LT(
          static_cast<size_t>(strategy_.trainer_id_),
          strategy_.trainers_endpoints_.size(),
          platform::errors::InvalidArgument(
              "The trainer_id_ of strategy_ must be less than the "
              "size of vector strategy_.trainers_endpoints_, "
              "but received strategy_.trainer_id_ = %d, "
              "the size of strategy_.trainers_endpoints_ is %d.",
              static_cast<size_t>(strategy_.trainer_id_),
              strategy_.trainers_endpoints_.size()));
S
sneaxiy 已提交
213
    }
C
chengduo 已提交
214
    VLOG(1) << "CollectiveContext:" << context->String();
215 216
  }

217 218 219 220
  void AppendAddReaderDependencyPass() {
    AppendPass("add_reader_dependency_pass");
  }

221
  // Convert graph to run on multi-devices.
C
chengduo 已提交
222
  void AppendMultiDevPass() {
C
chengduo 已提交
223
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
224 225 226
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
227 228
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
229 230 231 232 233 234 235 236 237 238
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
239 240
          PADDLE_THROW(
              platform::errors::Unimplemented("Unknown reduce strategy."));
241 242 243 244 245 246
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
247 248 249 250 251 252 253 254 255 256 257
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
258 259 260 261 262
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
282 283 284 285 286
    PADDLE_ENFORCE_NE(FLAGS_use_mkldnn, true,
                      platform::errors::PreconditionNotMet(
                          "FLAGS_use_mkldnn has been set to True, but "
                          "PaddlePaddle is compiled without MKLDNN. "
                          "Please compile PaddlePaddle with MKLDNN first."));
C
chengduo 已提交
287 288 289
#endif
  }

290 291 292 293
 private:
  BuildStrategy strategy_;
};

294
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
295 296
    bool finalize_strategy) const {
  if (is_finalized_) {
297 298
    return pass_builder_;
  }
299
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
300 301
  if (finalize_strategy) {
    is_finalized_ = true;
302
  }
X
fix  
Xin Pan 已提交
303
  return pass_builder_;
304 305
}

306
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
307
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
308 309
}

310 311 312 313 314
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
315
#if defined(PADDLE_WITH_NCCL)
316
                                DeviceType use_device,
317
                                platform::NCCLCommunicator *nccl_ctxs) const {
318 319 320
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
                                DeviceType use_device,
                                platform::BKCLCommunicator *bkcl_ctxs) const {
321
#else
322
                                DeviceType use_device) const {
323
#endif
C
chengduo 已提交
324
  VLOG(1) << "apply all passes";
325 326
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
327 328

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
329
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
330 331 332
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
333 334
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
335 336
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
337
                                                    &local_scopes);
338 339
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
340

341
#if defined(PADDLE_WITH_NCCL)
342 343
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
344
      pass->Erase(kNCCLCtxs);
345
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
346 347 348 349 350 351
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      // ToDo: more check
      platform::BKCLCommunicator *bkcl_ctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, bkcl_ctx);
352
#endif
C
chengduo 已提交
353
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
354 355
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
356 357 358 359 360
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
361
#if defined(PADDLE_WITH_NCCL)
362 363
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
364 365 366 367 368
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
369 370 371 372 373 374 375 376 377 378 379
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
380
#endif
381
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
382 383
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
384
    } else if (pass->Type() == "sequential_execution_pass") {
385 386
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
387
    } else if (pass->Type() == "all_reduce_deps_pass") {
388
#if defined(PADDLE_WITH_NCCL)
389 390
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
391
      pass->Erase(kNCCLCtxs);
392
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
393 394 395
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
396 397 398 399 400 401 402 403 404 405 406
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
407
#endif
408 409
      VLOG(1) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
              << ", num_trainers:" << num_trainers_;
410
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
411
      if (use_device != p::kCUDA) {
412 413 414 415
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
416
    } else if (pass->Type() == "fusion_group_pass") {
417 418
      pass->Set<bool>("use_gpu", new bool((use_device == p::kCUDA)));
      if (use_device != p::kCUDA) {
419 420 421
        LOG(WARNING) << "fusion_group_pass is only supported on GPU, skipped.";
        continue;
      }
Z
Zhen Wang 已提交
422
    } else if (pass->Type() == "fuse_bn_act_pass") {
423
      if (use_device != p::kCUDA) {
Z
Zhen Wang 已提交
424 425 426 427
        LOG(WARNING) << "fuse_bn_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
Z
Zhang Ting 已提交
428
    } else if (pass->Type() == "fuse_bn_add_act_pass") {
429
      if (use_device != p::kCUDA) {
Z
Zhang Ting 已提交
430 431 432 433
        LOG(WARNING) << "fuse_bn_add_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
434 435 436
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
437
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
438
      if (use_device != p::kCUDA) {
439 440 441 442
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
443
    }
C
chengduo 已提交
444
    VLOG(1) << "Start Apply Pass " << pass->Type();
445
    graph = pass->Apply(graph);
C
chengduo 已提交
446
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
447
  }
C
chengduo 已提交
448
  VLOG(1) << "All Passes Applied";
449 450
  return graph;
}
D
dzhwinter 已提交
451

452 453 454 455
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
456
USE_PASS(sync_batch_norm_pass);
457
USE_PASS(fuse_relu_depthwise_conv_pass);
458
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
459
USE_PASS(fuse_bn_act_pass);
Z
Zhang Ting 已提交
460
USE_PASS(fuse_bn_add_act_pass);
461
USE_PASS(graph_viz_pass);
462
USE_PASS(multi_batch_merge_pass);
463
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
464
USE_PASS(all_reduce_mode_multi_devices_pass);
465
USE_PASS(dist_multi_devices_pass);
466 467
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
468
USE_PASS(sequential_execution_pass);
469
USE_PASS(all_reduce_deps_pass);
470
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
471
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
472
USE_PASS(lock_free_optimize_pass);
473
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
474
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
475 476
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
477
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
478
USE_PASS(fuse_all_reduce_op_pass);
479
USE_PASS(runtime_context_cache_pass);
480
USE_PASS(add_reader_dependency_pass);
481 482 483
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
484
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
485 486
USE_PASS(fusion_group_pass);
#endif