activation_op_xpu.cc 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/activation_op.h"
#include <string>
Q
QingshuChen 已提交
19
#include "paddle/fluid/platform/xpu/xpu_header.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename Functor>
class XPUActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

template <typename Functor>
class XPUActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

56
template <typename DeviceContext, typename T, typename XPUT>
T
TTerror 已提交
57 58
void xpu_activation_forward(
    const framework::ExecutionContext &ctx,
59
    std::function<int(xpu::Context *, const XPUT *, XPUT *, int)> func) {
60 61
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
62 63
  const XPUT *x_data = reinterpret_cast<const XPUT *>(x->data<T>());
  XPUT *y_data = reinterpret_cast<XPUT *>(y->mutable_data<T>(ctx.GetPlace()));
P
procr 已提交
64

T
TTerror 已提交
65 66 67 68 69 70
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
  int r = func(xpu_context, x_data, y_data, x->numel());
  PADDLE_ENFORCE_EQ(
      r, xpu::Error_t::SUCCESS,
      platform::errors::External("XPU activation op return wrong value[%d %s].",
                                 r, XPUAPIErrorMsg[r]));
71 72
}

73 74 75 76 77 78
template <typename DeviceContext, typename T, typename XPUT>
void xpu_activation_backward(
    const framework::ExecutionContext &ctx,
    std::function<int(xpu::Context *, const XPUT *, const XPUT *, const XPUT *,
                      XPUT *, int)>
        func) {
79 80 81 82 83
  /* TODO: relu tanh sigmoid are inplace */
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Input<Tensor>("Out");
  auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
  auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
84 85 86 87 88 89 90
  const XPUT *x_data = nullptr;
  const XPUT *y_data = nullptr;
  const XPUT *y_grad = nullptr;
  if (x != nullptr) x_data = reinterpret_cast<const XPUT *>(x->data<T>());
  if (y != nullptr) y_data = reinterpret_cast<const XPUT *>(y->data<T>());
  if (dOut != nullptr) y_grad = reinterpret_cast<const XPUT *>(dOut->data<T>());
  XPUT *x_grad = reinterpret_cast<XPUT *>(dX->mutable_data<T>(ctx.GetPlace()));
91
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
P
procr 已提交
92

T
TTerror 已提交
93 94
  int r = func(xpu_context, x_data, y_data, y_grad, x_grad, dX->numel());
  PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
95
                    platform::errors::External(
T
TTerror 已提交
96 97
                        "XPU activation grad op return wrong value[%d %s].", r,
                        XPUAPIErrorMsg[r]));
98 99
}

T
TTerror 已提交
100 101
template <typename T>
struct XPUReluFunctor : public BaseActivationFunctor<T> {
102
  using XPUType = typename XPUTypeTrait<T>::Type;
103
  void operator()(const framework::ExecutionContext &ctx) const {
104 105
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::relu<XPUType>);
106 107 108
  }
};

T
TTerror 已提交
109 110
template <typename T>
struct XPUSigmoidFunctor : public BaseActivationFunctor<T> {
111
  using XPUType = typename XPUTypeTrait<T>::Type;
112
  void operator()(const framework::ExecutionContext &ctx) const {
113 114
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::sigmoid<XPUType>);
115 116 117 118
  }
};

template <typename T>
T
TTerror 已提交
119
struct XPUTanhFunctor : public BaseActivationFunctor<T> {
120
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
121
  void operator()(const framework::ExecutionContext &ctx) const {
122 123
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::tanh<XPUType>);
T
TTerror 已提交
124 125 126
  }
};

127
template <typename T>
T
TTerror 已提交
128
struct XPULogFunctor : public BaseActivationFunctor<T> {
129
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
130
  void operator()(const framework::ExecutionContext &ctx) const {
131 132
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::log<XPUType>);
T
TTerror 已提交
133 134 135
  }
};

136
template <typename T>
T
TTerror 已提交
137
struct XPUSquareFunctor : public BaseActivationFunctor<T> {
138
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
139
  void operator()(const framework::ExecutionContext &ctx) const {
140 141
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::square<XPUType>);
T
TTerror 已提交
142 143 144
  }
};

145
template <typename T>
T
TTerror 已提交
146
struct XPUSqrtFunctor : public BaseActivationFunctor<T> {
147
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
148
  void operator()(const framework::ExecutionContext &ctx) const {
149 150
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::sqrt<XPUType>);
T
TTerror 已提交
151 152 153
  }
};

154
template <typename T>
T
TTerror 已提交
155
struct XPUAbsFunctor : public BaseActivationFunctor<T> {
156
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
157
  void operator()(const framework::ExecutionContext &ctx) const {
158 159
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::abs<XPUType>);
T
TTerror 已提交
160 161 162
  }
};

163
template <typename T>
T
TTerror 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct XPUPowFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    auto pow_factor = ctx.Attr<float>("factor");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *factor_data = nullptr;

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void **>(&factor_data),
                                 x->numel() * sizeof(T)),
                      XPU_SUCCESS, platform::errors::ResourceExhausted(
                                       "XPU has no enough memory"));
    int r = xpu::constant<T>(xpu_context, factor_data, x->numel(), pow_factor);
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU constant op return"
                                   " wrong value[%d %s] in pow op.",
                                   r, XPUAPIErrorMsg[r]));
    r = xpu::pow(xpu_context, x_data, factor_data, y_data, x->numel());
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU pow op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));
    if (xpu_context->xpu_stream != nullptr) {
      xpu_wait(xpu_context->xpu_stream);
    }
    xpu_free(factor_data);
  }
};

P
procr 已提交
197
template <typename T>
T
TTerror 已提交
198
struct XPUHardSwishFunctor : public BaseActivationFunctor<T> {
199
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
200 201 202 203 204 205 206 207 208 209 210 211
  void operator()(const framework::ExecutionContext &ctx) const {
    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");
    PADDLE_ENFORCE_EQ(threshold, 6.0f,
                      platform::errors::External(
                          "Not support threshold [%f] in XPU", threshold));
    PADDLE_ENFORCE_EQ(scale, 6.0f, platform::errors::External(
                                       "Not support scale [%f] in XPU", scale));
    PADDLE_ENFORCE_EQ(
        offset, 3.0f,
        platform::errors::External("Not support offset [%f] in XPU", offset));
212 213
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::hard_swish<XPUType>);
T
TTerror 已提交
214 215 216
  }
};

217
template <typename T>
T
TTerror 已提交
218
struct XPUReluGradFunctor : public BaseActivationFunctor<T> {
219
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
220
  void operator()(const framework::ExecutionContext &ctx) const {
221 222
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::relu_grad<XPUType>);
T
TTerror 已提交
223 224 225
  }
};

226
template <typename T>
T
TTerror 已提交
227
struct XPUTanhGradFunctor : public BaseActivationFunctor<T> {
228
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
229
  void operator()(const framework::ExecutionContext &ctx) const {
230 231
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::tanh_grad<XPUType>);
T
TTerror 已提交
232 233 234
  }
};

235
template <typename T>
T
TTerror 已提交
236
struct XPUSigmoidGradFunctor : public BaseActivationFunctor<T> {
237
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
238
  void operator()(const framework::ExecutionContext &ctx) const {
239 240
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::sigmoid_grad<XPUType>);
T
TTerror 已提交
241 242 243
  }
};

244
template <typename T>
T
TTerror 已提交
245
struct XPUSqrtGradFunctor : public BaseActivationFunctor<T> {
246
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
247
  void operator()(const framework::ExecutionContext &ctx) const {
248 249
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::sqrt_grad<XPUType>);
T
TTerror 已提交
250 251 252
  }
};

253
template <typename T>
T
TTerror 已提交
254
struct XPUSquareGradFunctor : public BaseActivationFunctor<T> {
255
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
256
  void operator()(const framework::ExecutionContext &ctx) const {
257 258
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::square_grad<XPUType>);
T
TTerror 已提交
259 260 261
  }
};

262
template <typename T>
T
TTerror 已提交
263
struct XPUHardSwishGradFunctor : public BaseActivationFunctor<T> {
264
  using XPUType = typename XPUTypeTrait<T>::Type;
T
TTerror 已提交
265 266 267 268 269 270 271 272 273 274 275 276
  void operator()(const framework::ExecutionContext &ctx) const {
    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");
    PADDLE_ENFORCE_EQ(threshold, 6.0f,
                      platform::errors::External(
                          "Not support threshold [%f] in XPU", threshold));
    PADDLE_ENFORCE_EQ(scale, 6.0f, platform::errors::External(
                                       "Not support scale [%f] in XPU", scale));
    PADDLE_ENFORCE_EQ(
        offset, 3.0f,
        platform::errors::External("Not support offset [%f] in XPU", offset));
277 278
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T, XPUType>(
        ctx, xpu::hard_swish_grad<XPUType>);
T
TTerror 已提交
279 280 281
  }
};

P
procr 已提交
282
template <typename T>
T
TTerror 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
struct XPULeakyReluFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    float alpha = ctx.Attr<float>("alpha");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    int r = xpu::leaky_relu(xpu_context, x_data, y_data, x->numel(), alpha);
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU leaky_relu return wrong value[%d %s].",
                                   r, XPUAPIErrorMsg[r]));
  }
};

301
template <typename T>
T
TTerror 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
struct XPULeakyReluGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    float alpha = ctx.Attr<float>("alpha");
    const T *x_data = nullptr;
    const T *y_grad = nullptr;
    if (x != nullptr) x_data = x->data<T>();
    if (dOut != nullptr) y_grad = dOut->data<T>();
    T *x_grad = dX->mutable_data<T>(ctx.GetPlace());
    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();

    // The signs of x and y are the same,
    // y == nullptr here,
    // so we give 2 x to the api
    int r = xpu::leaky_relu_grad(
        xpu_context, reinterpret_cast<const float *>(x_data),
        reinterpret_cast<const float *>(x_data),
        reinterpret_cast<const float *>(y_grad),
        reinterpret_cast<float *>(x_grad), dX->numel(), alpha);
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "XPU leaky_relu_grad return wrong value[%d %s].", r,
                          XPUAPIErrorMsg[r]));
  }
};

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_XPU_KERNEL(act_type, functor, grad_functor)  \
  REGISTER_OP_XPU_KERNEL(act_type,                                       \
                         ops::XPUActivationKernel<ops::functor<float>>); \
  REGISTER_OP_XPU_KERNEL(                                                \
      act_type##_grad,                                                   \
      ops::XPUActivationGradKernel<ops::grad_functor<float>>);

REGISTER_ACTIVATION_XPU_KERNEL(relu, XPUReluFunctor, XPUReluGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(sigmoid, XPUSigmoidFunctor,
                               XPUSigmoidGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(sqrt, XPUSqrtFunctor, XPUSqrtGradFunctor)
T
TTerror 已提交
347
REGISTER_ACTIVATION_XPU_KERNEL(square, XPUSquareFunctor, XPUSquareGradFunctor)
P
procr 已提交
348 349
REGISTER_ACTIVATION_XPU_KERNEL(hard_swish, XPUHardSwishFunctor,
                               XPUHardSwishGradFunctor)
T
TTerror 已提交
350 351
REGISTER_ACTIVATION_XPU_KERNEL(leaky_relu, XPULeakyReluFunctor,
                               XPULeakyReluGradFunctor)
352 353 354 355 356 357 358 359 360

REGISTER_OP_XPU_KERNEL(
    tanh, ops::XPUActivationKernel<ops::XPUTanhFunctor<float>>,
    ops::XPUActivationKernel<ops::XPUTanhFunctor<paddle::platform::float16>>);
REGISTER_OP_XPU_KERNEL(
    tanh_grad, ops::XPUActivationGradKernel<ops::XPUTanhGradFunctor<float>>,
    ops::XPUActivationGradKernel<
        ops::XPUTanhGradFunctor<paddle::platform::float16>>);

361 362 363
REGISTER_OP_XPU_KERNEL(log,
                       ops::XPUActivationKernel<ops::XPULogFunctor<float>>);
REGISTER_OP_XPU_KERNEL(pow,
T
TTerror 已提交
364
                       ops::XPUActivationKernel<ops::XPUPowFunctor<float>>);
365
REGISTER_OP_XPU_KERNEL(abs,
T
TTerror 已提交
366
                       ops::XPUActivationKernel<ops::XPUAbsFunctor<float>>);
367 368

#endif  // PADDLE_WITH_XPU