activation_op_xpu.cc 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/activation_op.h"
#include <string>
Q
QingshuChen 已提交
19
#include "paddle/fluid/platform/xpu/xpu_header.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename Functor>
class XPUActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

template <typename Functor>
class XPUActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

template <typename DeviceContext, typename T>
T
TTerror 已提交
57 58 59
void xpu_activation_forward(
    const framework::ExecutionContext &ctx,
    std::function<int(xpu::Context *, const T *, T *, int)> func) {
60 61 62 63
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
  const T *x_data = x->data<T>();
  T *y_data = y->mutable_data<T>(ctx.GetPlace());
P
procr 已提交
64

T
TTerror 已提交
65 66 67 68 69 70
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
  int r = func(xpu_context, x_data, y_data, x->numel());
  PADDLE_ENFORCE_EQ(
      r, xpu::Error_t::SUCCESS,
      platform::errors::External("XPU activation op return wrong value[%d %s].",
                                 r, XPUAPIErrorMsg[r]));
71 72 73 74
}

template <typename DeviceContext, typename T>
void xpu_activation_backward(const framework::ExecutionContext &ctx,
T
TTerror 已提交
75 76 77
                             std::function<int(xpu::Context *, const T *,
                                               const T *, const T *, T *, int)>
                                 func) {
78 79 80 81 82 83 84 85 86 87 88 89 90
  /* TODO: relu tanh sigmoid are inplace */
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Input<Tensor>("Out");
  auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
  auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  const T *y_grad = nullptr;
  if (x != nullptr) x_data = x->data<T>();
  if (y != nullptr) y_data = y->data<T>();
  if (dOut != nullptr) y_grad = dOut->data<T>();
  T *x_grad = dX->mutable_data<T>(ctx.GetPlace());
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
P
procr 已提交
91

T
TTerror 已提交
92 93
  int r = func(xpu_context, x_data, y_data, y_grad, x_grad, dX->numel());
  PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
94
                    platform::errors::External(
T
TTerror 已提交
95 96
                        "XPU activation grad op return wrong value[%d %s].", r,
                        XPUAPIErrorMsg[r]));
97 98
}

T
TTerror 已提交
99 100
template <typename T>
struct XPUReluFunctor : public BaseActivationFunctor<T> {
101 102
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(ctx,
T
TTerror 已提交
103
                                                                  xpu::relu<T>);
104 105 106
  }
};

T
TTerror 已提交
107 108
template <typename T>
struct XPUSigmoidFunctor : public BaseActivationFunctor<T> {
109
  void operator()(const framework::ExecutionContext &ctx) const {
T
TTerror 已提交
110 111
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::sigmoid<T>);
112 113 114 115
  }
};

template <typename T>
T
TTerror 已提交
116 117 118 119 120 121 122
struct XPUTanhFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(ctx,
                                                                  xpu::tanh<T>);
  }
};

123
template <typename T>
T
TTerror 已提交
124 125 126 127 128 129 130
struct XPUGeluFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(ctx,
                                                                  xpu::gelu<T>);
  }
};

131
template <typename T>
T
TTerror 已提交
132 133 134 135 136 137 138
struct XPULogFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(ctx,
                                                                  xpu::log<T>);
  }
};

139
template <typename T>
T
TTerror 已提交
140 141 142 143 144 145 146
struct XPUSquareFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::square<T>);
  }
};

147
template <typename T>
T
TTerror 已提交
148 149 150 151 152 153 154
struct XPUSqrtFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(ctx,
                                                                  xpu::sqrt<T>);
  }
};

155
template <typename T>
T
TTerror 已提交
156 157 158 159 160 161 162
struct XPUAbsFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(ctx,
                                                                  xpu::abs<T>);
  }
};

163
template <typename T>
T
TTerror 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct XPUPowFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    auto pow_factor = ctx.Attr<float>("factor");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *factor_data = nullptr;

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void **>(&factor_data),
                                 x->numel() * sizeof(T)),
                      XPU_SUCCESS, platform::errors::ResourceExhausted(
                                       "XPU has no enough memory"));
    int r = xpu::constant<T>(xpu_context, factor_data, x->numel(), pow_factor);
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU constant op return"
                                   " wrong value[%d %s] in pow op.",
                                   r, XPUAPIErrorMsg[r]));
    r = xpu::pow(xpu_context, x_data, factor_data, y_data, x->numel());
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU pow op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));
    if (xpu_context->xpu_stream != nullptr) {
      xpu_wait(xpu_context->xpu_stream);
    }
    xpu_free(factor_data);
  }
};

P
procr 已提交
197
template <typename T>
T
TTerror 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
struct XPUHardSwishFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");
    PADDLE_ENFORCE_EQ(threshold, 6.0f,
                      platform::errors::External(
                          "Not support threshold [%f] in XPU", threshold));
    PADDLE_ENFORCE_EQ(scale, 6.0f, platform::errors::External(
                                       "Not support scale [%f] in XPU", scale));
    PADDLE_ENFORCE_EQ(
        offset, 3.0f,
        platform::errors::External("Not support offset [%f] in XPU", offset));
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::hard_swish<T>);
  }
};

216
template <typename T>
T
TTerror 已提交
217 218 219 220 221 222 223
struct XPUReluGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::relu_grad<T>);
  }
};

224
template <typename T>
T
TTerror 已提交
225 226 227 228 229 230 231
struct XPUTanhGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::tanh_grad<T>);
  }
};

232
template <typename T>
T
TTerror 已提交
233 234 235 236 237 238 239
struct XPUSigmoidGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::sigmoid_grad<T>);
  }
};

240
template <typename T>
T
TTerror 已提交
241 242 243 244 245 246 247
struct XPUGeluGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::gelu_grad<T>);
  }
};

248
template <typename T>
T
TTerror 已提交
249 250 251 252 253 254 255
struct XPUSqrtGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::sqrt_grad<T>);
  }
};

256
template <typename T>
T
TTerror 已提交
257 258 259 260 261 262 263
struct XPUSquareGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::square_grad<T>);
  }
};

264
template <typename T>
T
TTerror 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
struct XPUHardSwishGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    float threshold = ctx.Attr<float>("threshold");
    float scale = ctx.Attr<float>("scale");
    float offset = ctx.Attr<float>("offset");
    PADDLE_ENFORCE_EQ(threshold, 6.0f,
                      platform::errors::External(
                          "Not support threshold [%f] in XPU", threshold));
    PADDLE_ENFORCE_EQ(scale, 6.0f, platform::errors::External(
                                       "Not support scale [%f] in XPU", scale));
    PADDLE_ENFORCE_EQ(
        offset, 3.0f,
        platform::errors::External("Not support offset [%f] in XPU", offset));
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(
        ctx, xpu::hard_swish_grad<T>);
  }
};

P
procr 已提交
283
template <typename T>
T
TTerror 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
struct XPULeakyReluFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Out");
    float alpha = ctx.Attr<float>("alpha");
    const T *x_data = x->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());

    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();
    int r = xpu::leaky_relu(xpu_context, x_data, y_data, x->numel(), alpha);
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU leaky_relu return wrong value[%d %s].",
                                   r, XPUAPIErrorMsg[r]));
  }
};

302
template <typename T>
T
TTerror 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
struct XPULeakyReluGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const auto *x = ctx.Input<Tensor>("X");
    auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    float alpha = ctx.Attr<float>("alpha");
    const T *x_data = nullptr;
    const T *y_grad = nullptr;
    if (x != nullptr) x_data = x->data<T>();
    if (dOut != nullptr) y_grad = dOut->data<T>();
    T *x_grad = dX->mutable_data<T>(ctx.GetPlace());
    auto xpu_context =
        ctx.device_context<paddle::platform::XPUDeviceContext>().x_context();

    // The signs of x and y are the same,
    // y == nullptr here,
    // so we give 2 x to the api
    int r = xpu::leaky_relu_grad(
        xpu_context, reinterpret_cast<const float *>(x_data),
        reinterpret_cast<const float *>(x_data),
        reinterpret_cast<const float *>(y_grad),
        reinterpret_cast<float *>(x_grad), dX->numel(), alpha);
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "XPU leaky_relu_grad return wrong value[%d %s].", r,
                          XPUAPIErrorMsg[r]));
  }
};

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_XPU_KERNEL(act_type, functor, grad_functor)  \
  REGISTER_OP_XPU_KERNEL(act_type,                                       \
                         ops::XPUActivationKernel<ops::functor<float>>); \
  REGISTER_OP_XPU_KERNEL(                                                \
      act_type##_grad,                                                   \
      ops::XPUActivationGradKernel<ops::grad_functor<float>>);

REGISTER_ACTIVATION_XPU_KERNEL(relu, XPUReluFunctor, XPUReluGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(tanh, XPUTanhFunctor, XPUTanhGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(sigmoid, XPUSigmoidFunctor,
                               XPUSigmoidGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(gelu, XPUGeluFunctor, XPUGeluGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(sqrt, XPUSqrtFunctor, XPUSqrtGradFunctor)
T
TTerror 已提交
350
REGISTER_ACTIVATION_XPU_KERNEL(square, XPUSquareFunctor, XPUSquareGradFunctor)
P
procr 已提交
351 352
REGISTER_ACTIVATION_XPU_KERNEL(hard_swish, XPUHardSwishFunctor,
                               XPUHardSwishGradFunctor)
T
TTerror 已提交
353 354
REGISTER_ACTIVATION_XPU_KERNEL(leaky_relu, XPULeakyReluFunctor,
                               XPULeakyReluGradFunctor)
355 356 357
REGISTER_OP_XPU_KERNEL(log,
                       ops::XPUActivationKernel<ops::XPULogFunctor<float>>);
REGISTER_OP_XPU_KERNEL(pow,
T
TTerror 已提交
358
                       ops::XPUActivationKernel<ops::XPUPowFunctor<float>>);
359
REGISTER_OP_XPU_KERNEL(abs,
T
TTerror 已提交
360
                       ops::XPUActivationKernel<ops::XPUAbsFunctor<float>>);
361 362

#endif  // PADDLE_WITH_XPU