math_op_patch.py 14.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name
22
from .layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
23

24
_supported_int_dtype_ = [
25
    core.VarDesc.VarType.BOOL,
26 27 28 29 30 31 32
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

33 34
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
    "__div__": "A / B",
    "__truediv__": "A / B",
    "__rdiv__": "A /= B",
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

58 59
_already_patch_variable = False

Y
Yang Yu 已提交
60 61

def monkey_patch_variable():
Y
Yang Yu 已提交
62
    def unique_tmp_name():
Y
Yu Yang 已提交
63
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
64 65 66 67 68 69 70 71

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

72
    def current_block(var):
73
        return var.block.program.current_block()
74 75 76 77 78

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
79 80
    def create_tensor(block, value, dtype, shape):
        value = float(value)
81
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
82 83 84
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
85 86 87 88
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
89
                'force_cpu': False
H
Hongyu Liu 已提交
90 91 92
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
93 94
        return var

Y
Yang Yu 已提交
95 96 97
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
98 99 100
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
101 102
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
103
        batch_dim = -1
104
        out_shape = []
105 106
        for i, d in enumerate(ref_var.shape):
            if d < 0:
107 108 109 110 111 112 113
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
114
        assert batch_dim != -1
115
        block.append_op(
Y
Yang Yu 已提交
116 117 118
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
119
            attrs={
120
                'shape': out_shape,
121 122 123
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
124 125 126 127
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
128 129 130 131
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
132 133 134
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
135
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
136

Y
Yang Yu 已提交
137
        Args:
J
Jiabin Yang 已提交
138

Y
Yang Yu 已提交
139
            self(Variable): The source variable
J
Jiabin Yang 已提交
140 141

            dtype: The target data type
Y
Yang Yu 已提交
142 143

        Returns:
J
Jiabin Yang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
174
        """
175 176 177
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
178 179 180 181 182
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
183
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
184 185
        return out

186
    def _scalar_op_(var, scale, bias):
187 188 189 190 191 192 193 194 195 196
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

197
    def _neg_(var):
198
        return _scalar_op_(var, -1.0, 0.0)
199

200 201
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
202

203 204
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
205

206 207
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
208

209 210
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
211

212 213
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)
214

215 216 217 218
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
Y
Yang Yu 已提交
219
        def __impl__(self, other_var):
220 221 222 223 224 225 226 227 228
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
229
                    return scalar_method(self, other_var)
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
                # the division result can only guarantee the numerical accuracy of 6 digits 
                # after the decimal point. The result of numpy calculation is of float64 type, 
                # so the calculation result here and the calculation result of numpy are 
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
250

251
            # 2. create variable for scalar
Y
Yang Yu 已提交
252 253 254 255 256 257 258 259 260 261
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
262
                            current_block(self),
Y
Yang Yu 已提交
263 264 265 266 267 268 269
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
270
                    # add fill_op to current_block
Y
Yang Yu 已提交
271
                    other_var = create_scalar(
272
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
273

274
            # 3. unify right var type to left var
Y
Yang Yu 已提交
275 276 277 278 279 280 281 282
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

283 284 285 286 287 288
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

289 290
            axis = -1
            if other_var.shape[0] == -1:
291 292 293
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
294
                warnings.warn(
295 296 297 298 299
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
300
            current_block(self).append_op(
Y
Yang Yu 已提交
301 302 303
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
304
                outputs={'Out': out},
305
                attrs={'axis': axis})
Y
Yang Yu 已提交
306 307 308 309 310 311 312 313
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
314
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
315 316 317 318 319 320 321

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
        ('__add__', _binary_creator_('__add__', 'elementwise_add', False,
                                     _scalar_add_)),
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
S
ShenLiang 已提交
340 341 342 343 344 345 346 347
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
        ('__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div',
                                          True, None)),
348 349 350 351
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
S
ShenLiang 已提交
352 353 354 355
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
373
        variabel_methods = paddle.tensor.tensor_method_func
374
        for method_name in variabel_methods:
375 376 377 378 379
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

    _already_patch_variable = True