concat_op.cc 9.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
1
123malin 已提交
16

P
phlrain 已提交
17
#include <memory>
S
Siddharth Goyal 已提交
18
#include <string>
19 20
#include <vector>

P
phlrain 已提交
21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

25 26
namespace paddle {
namespace operators {
27
using Tensor = framework::Tensor;
28 29 30 31 32

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "Concat");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Concat");
36

37
    auto inputs_dims = ctx->GetInputsDim("X");
38

39
    const size_t inputs_num = inputs_dims.size();
40 41 42 43 44
    PADDLE_ENFORCE_GT(
        inputs_num, static_cast<size_t>(0),
        platform::errors::InvalidArgument(
            "The number of input tensors in concat op should > 0. But "
            "received inputs' length is 0."));
45
    if (inputs_num == 1) {
46 47
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
    }
48

49 50 51 52 53 54 55 56 57 58 59 60 61
    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(inputs_dims[0].size(), -1));
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      size_t axis =
          ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
                      static_cast<int64_t>(inputs_dims[0].size()));
      framework::DDim out_dims =
          ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims, axis);
      if (out_dims[axis] < 0) {
        out_dims[axis] = -1;
62
      }
63 64
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
65 66
    }
  }
P
phlrain 已提交
67 68 69 70

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
71
    auto inputs = ctx.MultiInput<Tensor>("X");
72 73
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
74 75 76
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = input->type();
77 78 79 80 81
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
1
123malin 已提交
82 83
      PADDLE_THROW(platform::errors::InvalidArgument(
          "All Inputs of Concat OP are Empty!"));
84
    }
P
phlrain 已提交
85
#ifdef PADDLE_WITH_MKLDNN
86
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
phlrain 已提交
87 88 89 90 91 92 93
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
94 95 96 97 98 99 100 101 102 103

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
104 105 106 107
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
108
  void Make() override {
109 110
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
111 112 113
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
Z
zmx 已提交
114 115
        .SetDefault(false)
        .AsExtra();
116
    AddAttr<int>("axis",
117 118 119 120
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
121
        .SetDefault(0);
122 123 124 125 126 127
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
128 129 130 131
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
Z
zmx 已提交
132 133
        .SetDefault(false)
        .AsExtra();
134 135 136 137
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
zmx 已提交
138 139
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
140 141 142 143 144 145 146 147 148 149 150 151 152
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
153 154 155
  }
};

156 157
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
158
  using framework::OperatorWithKernel::OperatorWithKernel;
159

160
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
161 162 163
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
164 165

    ctx->ShareAllLoD(in_x, out_x_g_n);
166
  }
P
phlrain 已提交
167 168 169 170

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
171 172 173
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
P
phlrain 已提交
174
  }
175 176 177 178 179 180 181 182 183 184

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
P
phlrain 已提交
185 186
};

187
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInferer, "X");
P
phlrain 已提交
188

H
hong 已提交
189 190
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
191
 public:
H
hong 已提交
192
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
193 194

 protected:
195
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
196
    op->SetType("concat_grad");
H
hong 已提交
197
    op->SetInput("X", this->Input("X"));
H
hong 已提交
198 199 200
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
201 202 203
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
204
  }
205 206
};

C
ceci3 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220
template <typename T>
class ConcatDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("concat");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

221 222 223 224
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
225
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
H
hong 已提交
226 227
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>);
P
phlrain 已提交
228
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
C
ceci3 已提交
229 230
                  ops::ConcatDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatDoubleGradOpMaker<paddle::imperative::OpBase>,
231
                  ops::ConcatOpGradNoNeedBufferVarInferer);
C
chengduoZH 已提交
232
REGISTER_OP_CPU_KERNEL(
233 234
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
235
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, bool>,
236
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
237 238
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::float16>,
L
liuyuhui 已提交
239 240
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, uint8_t>);
C
chengduoZH 已提交
241 242
REGISTER_OP_CPU_KERNEL(
    concat_grad,
243 244
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
245
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, bool>,
246
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
247 248
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::float16>,
L
liuyuhui 已提交
249
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>,
250
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, uint8_t>);